Cortical retinotopy and specificity of perceptual learning revealed by ERP
ERP 揭示的皮质视网膜病变和知觉学习的特异性
基本信息
- 批准号:1063415
- 负责人:
- 金额:$ 45.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-05-01 至 2014-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In our daily lives our brains are constantly adapting to new visual experiences and learning optimal solutions to new tasks. Understanding the mechanisms of neural plasticity is crucial for developing effective training paradigms. With support from the National Science Foundation, Professor Stanley Klein of the University of California, Berkeley, is carrying out a research project to develop new methods for revealing brain dynamics and brain structures that support neural plasticity. In the past 20 years, functional magnetic resonance imaging (fMRI) has identified numerous brain regions that are involved in perception, cognition, attention, decision-making, action, and other functions. But fMRI has access only to slow brain changes, on the order of seconds. Much of the important neural processing by the brain takes place a thousand times faster. A goal of this project is to develop new methods that will enable human brain waves from electroencephalography (EEG) to be used for identifying brain areas and tracking their activity on the milli-second time scale. The proposed research makes use of recently developed computer algorithms that use the detailed folding patterns of the human brain to isolate the generators of EEG activity. The first application of the new methods is investigations of how cortical activity in closely spaced brain areas change as a product of learning perceptually challenging visual tasks. However, the importance of this research extends well beyond the domain of visual perceptual learning: Once scientists can reliably measure cortical activity in closely connected brain areas, they will be able to follow in temporal detail the flows of activity across distinct brain areas during cognitive activity.The visual perception of patterns is so fundamental to our daily activities that when it is disrupted, the disruption often leads to an especially devastating impact on quality of life. This research on neural plasticity has the goal to develop methods that could inform not only these health issues but the visual learning process as applied to general education, vocational training, and many other aspects of daily living. During the project, the immediate educational impact is the involvement of graduate and undergraduate students in the research. The research forms the core dissertation research for graduate students. Professor Klein's laboratory is an active participant in the campus undergraduate research apprentice program (URAP) and admits several new undergraduate students each semester. The laboratory meets to discuss relevant research questions and findings. The students learn all aspects of EEG recording technology and get first hand research experience. After working in the laboratory, many URAP students have decided on and succeeded in higher education, be it basic research or clinical medicine. The techniques and software that are being developed will be posted on the internet for other researchers to use. The methods are sufficiently general to be useful to investigators who study sensory or higher cognitive functions.
在我们的日常生活中,我们的大脑不断适应新的视觉体验,并学习新任务的最佳解决方案。了解神经可塑性的机制对于发展有效的训练范例至关重要。在国家科学基金会的支持下,加利福尼亚大学伯克利分校的斯坦利·克莱因教授正在进行一个研究项目,以开发新的方法来揭示支持神经可塑性的大脑动力学和大脑结构。在过去的20年中,功能磁共振成像(fMRI)已经确定了许多与感知,认知,注意力,决策,动作和其他功能有关的大脑区域。但是fMRI只能按照秒的速度访问大脑的变化。 大脑的许多重要神经处理的速度更快。该项目的一个目的是开发新方法,以使脑电图(EEG)的人脑波用于识别脑区域并在毫米秒时尺度上跟踪其活动。提出的研究利用了最近开发的计算机算法,这些算法使用人脑的详细折叠模式来隔离脑电图活性的发生器。新方法的第一个应用是研究紧密间隔的大脑区域中的皮质活动如何变化,这是学习具有感知挑战的视觉任务的产物。然而,这项研究的重要性远远超出了视觉感知学习的领域:一旦科学家可以可靠地衡量紧密连接的大脑区域的皮质活动,它们将能够在时间上遵循认知活动期间不同大脑区域活动的活动流动。对我们的日常活动的视觉感知是如此基本,而在我们的日常活动上的影响通常会破坏,从而陷入了干扰,从而陷入了局限性,从而陷入了干扰,从而陷入了局限性。这项关于神经可塑性的研究的目标是开发方法,不仅可以为这些健康问题提供信息,还可以为通识教育,职业培训以及日常生活的许多其他方面提供信息。 在项目期间,直接的教育影响是研究生和本科生参与研究。该研究构成了研究生的核心论文研究。 克莱因(Klein)教授的实验室是校园本科研究学徒计划(URAP)的积极参与者,每个学期都接受了几名新的本科生。实验室开会讨论相关的研究问题和发现。学生学习EEG记录技术的各个方面,并获得第一手研究经验。在实验室工作后,许多URAP学生都决定并取得了高等教育的成功,无论是基础研究还是临床医学。正在开发的技术和软件将发布在互联网上供其他研究人员使用。这些方法足以对研究感觉或更高认知功能的研究者有用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stanley Klein其他文献
Reflections on Bruce Bridgeman’s insights into the Evolution of Consciousness and Cognition
- DOI:
10.1016/j.concog.2018.08.003 - 发表时间:
2018-09-01 - 期刊:
- 影响因子:
- 作者:
Stanley Klein - 通讯作者:
Stanley Klein
Vascular Injuries in the Urban Battleground: Experience at a Metropolitan Trauma Center
- DOI:
10.1016/s0890-5096(07)60062-4 - 发表时间:
1990-09-01 - 期刊:
- 影响因子:
- 作者:
Fred Bongard;Terry Dubrow;Stanley Klein - 通讯作者:
Stanley Klein
<em>Candida</em> sepsis in surgical patients
- DOI:
10.1016/s0002-9610(05)80666-x - 发表时间:
1993-12-01 - 期刊:
- 影响因子:
- 作者:
Patricia J. Eubanks;Christian de Virgilio;Stanley Klein;Fred Bongard - 通讯作者:
Fred Bongard
Stanley Klein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stanley Klein', 18)}}的其他基金
Acuity and Hyperacuity During Image Motion
图像运动期间的敏锐度和超敏锐度
- 批准号:
8820229 - 财政年份:1989
- 资助金额:
$ 45.37万 - 项目类别:
Continuing Grant
1978 Science Faculty Professional Development Program
1978年理学院专业发展计划
- 批准号:
7819108 - 财政年份:1978
- 资助金额:
$ 45.37万 - 项目类别:
Standard Grant
Instructional Scientific Equipment Program
教学科学设备计划
- 批准号:
7711760 - 财政年份:1977
- 资助金额:
$ 45.37万 - 项目类别:
Standard Grant
相似国自然基金
异常激活的小胶质细胞通过上调CTSS抑制微血管特异性因子MFSD2A表达促进1型糖尿病视网膜病变的免疫学机制研究
- 批准号:82370827
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
内皮细胞特异性敲除TAK1对糖尿病视网膜病变的调控作用及分子机制研究
- 批准号:82000902
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
感光细胞特异性表达基因NDRG2协同雌激素阻断MNU诱导视网膜色素变性的分子机制研究
- 批准号:81870676
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
SUMO特异性蛋白酶SENP3在糖尿病视网膜病变发病中的作用及其分子机制
- 批准号:81700856
- 批准年份:2017
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
特异性bFGF拮抗剂抑制视网膜新生血管的机制研究
- 批准号:81600759
- 批准年份:2016
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Molecular and cellular analysis of retinotopic projection pattern during degeneration of visual pathway
视觉通路变性过程中视网膜专题投射模式的分子和细胞分析
- 批准号:
20K23235 - 财政年份:2020
- 资助金额:
$ 45.37万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Regulation of retinotopy by Wnt signaling in the higher order visual center
高阶视觉中枢 Wnt 信号传导对视网膜病变的调节
- 批准号:
22700333 - 财政年份:2010
- 资助金额:
$ 45.37万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Retinotopy and areal organization of the third tier visual cortex
第三层视觉皮层的视网膜分布和区域组织
- 批准号:
18591912 - 财政年份:2006
- 资助金额:
$ 45.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The development of MEG source reconstruction methods through models of human retinotopy
通过人类视网膜病变模型开发 MEG 源重建方法
- 批准号:
EP/D039460/1 - 财政年份:2006
- 资助金额:
$ 45.37万 - 项目类别:
Research Grant
ショウジョウバエ視覚系における視神経投射地図の形成機構
果蝇视觉系统视神经投影图的形成机制
- 批准号:
17770185 - 财政年份:2005
- 资助金额:
$ 45.37万 - 项目类别:
Grant-in-Aid for Young Scientists (B)