GOALI: Novel Thin Film Composite Membranes for Desalination by Forward Osmosis

GOALI:用于正向渗透海水淡化的新型薄膜复合膜

基本信息

  • 批准号:
    1067564
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-06-15 至 2015-12-31
  • 项目状态:
    已结题

项目摘要

1067564McCutcheonAn increasingly arid world requires the innovation of sustainable technologies to produce potable water from impaired and saline water sources. Existing desalination technologies, like reverse osmosis (RO), remain an unsustainable option due to high energy costs and environmentally harmful brine discharges. Forward osmosis (FO) is an innovative and sustainable desalination alternative that promises to provide potable water from saline water sources at radically reduced cost, energy consumption, and brine discharge. Unlike RO, which requires a hydraulic driving force for separation, FO utilizes an osmotic driving force generated by a draw solution. The novelty of FO lies in the use of NH3-CO2 salts as a draw solute. These salts were identified by the PI and co-PI for their osmotic efficiency (capable of generating osmotic pressures up to 3,000 psi or 7,000 ft of head) and easy removal and reuse using only low grade waste heat (down to 40°C). The single obstacle to the successful commercialization of FO technologies is the poor productivity of existing salt-rejecting membranes due to a severe mass transfer limitation known as internal concentration polarization. The University of Connecticut (UConn) and Oasys WaterTM (Oasys) are combining their efforts to enable this transformational technology by considering revolutionary thin film composite (TFC) membrane designs that will mitigate the effects of this debilitating phenomenon. Key technical areas of innovation, identified by the PI and co-PI in previous efforts, are focused on making the membrane supporting structure thinner, more porous and less tortuous. This proposed work considers the implementation of electrospun nanofiber nonwovens as novel support structures in next generation TFC membranes tailored for NH3-CO2 forward osmosis. Electrospinning is a method that is commonly used to create highly porous and thin nanofibrous nonwoven materials. This project is the first effort to apply this unique structure with tunable properties in TFC membranes for FO applications. The nanofiber nonwoven will serve to anchor a crosslinked polyamide barrier layer deposited by in situ polymerization of m-phenylenediamine. The resulting TFC membranes will be characterized and evaluated for flux and selectivity performance. FO flux modeling techniques, developed by the PI, will be used to determine the severity of internal concentration polarization and provide input for future iterations of membrane design. This effort will for the first time employ an electrospun nanofiber nonwoven as a support structure for a TFC membrane tailored for FO. This work will further enable FO, an emerging membrane technology, to deliver on promised results of lower water cost and higher recovery. Constructing these membranes in the laboratory will require a comprehensive approach that will consider all aspects of the electrospun support fabrication and polyamide selective layer formation, thus requiring a unique combination of expertise in polymer science, nanotechnology, and mass transport. This project will also result in fundamental understanding of how the support layer structure impacts the in situ polymerization process and the performance of the resulting film. The PI and co-PI, both considered world experts on FO, are uniquely suited to complete this proposed work. Both have access to facilities and expertise that are customized specifically for the tasks outlined in this proposal. This emerging technology platform will serve as an excellent educational tool for students at UConn. Forward osmosis is a multistep process which relies on several unit operations. We will thus specifically integrate forward osmosis into the Chemical Engineering capstone Senior Design Course, giving multiple groups an opportunity to compete for the best design configuration which uses the least energy and has the lowest capital cost. This effort will be of interest to Oasys, which will sponsor an internship program for UConn engineering students that will facilitate the employment of engineers from UConn as well as foster a long term academic-industrial partnership. A safe and sustainable water supply in the 21st century is the most daunting task humanity faces with regards to public health. We must augment our existing water supplies through the treatment of compromised sources with sustainable and affordable technologies like FO. Nowhere are these issues more relevant than in the developing world. The PI will thus embark on a unique project in collaboration with the UConn chapter of Engineers without Borders (EWB) to install commercial FO systems in Ethiopia as remote water purifiers and teaching tools. This effort will be part of an existing US Agency for International Development/Higher Education (US-AID/HED) project conducted through UConn.
[67564]世界日益干旱,需要创新可持续技术,从受损和含盐的水源中生产饮用水。现有的海水淡化技术,如反渗透(RO),由于能源成本高和对环境有害的盐水排放,仍然是一种不可持续的选择。正向渗透(FO)是一种创新和可持续的海水淡化替代方案,有望从含盐水源中提供饮用水,从根本上降低成本、能源消耗和盐水排放。与RO需要水力驱动力来分离不同,FO利用了抽取液产生的渗透驱动力。FO的新颖之处在于使用NH3-CO2盐作为牵引溶质。PI和co-PI鉴定了这些盐的渗透效率(能够产生高达3000psi或7000英尺水头的渗透压),并且仅使用低品位废热(低至40°C)即可轻松去除和再利用。FO技术成功商业化的唯一障碍是由于严重的传质限制(称为内部浓度极化),现有的除盐膜的生产率很低。康涅狄格大学(UConn)和Oasys WaterTM (Oasys)正在共同努力,通过考虑革命性的薄膜复合材料(TFC)膜设计来实现这一变革性技术,从而减轻这种削弱现象的影响。PI和co-PI在之前的努力中确定的关键创新技术领域集中在使膜支撑结构更薄、更多孔和更少曲折上。本研究将电纺纳米纤维非织造布作为新一代TFC膜的新型支撑结构,用于NH3-CO2正向渗透。静电纺丝是一种通常用于制造高多孔和薄纳米纤维非织造材料的方法。该项目是首次将这种具有可调性能的独特结构应用于FO应用的TFC膜。纳米纤维非织造布将锚定通过间苯二胺原位聚合沉积的交联聚酰胺屏障层。所得的TFC膜将被表征和评价通量和选择性性能。由PI开发的FO通量建模技术将用于确定内部浓度极化的严重程度,并为未来的膜设计迭代提供输入。这项工作将首次采用电纺纳米纤维非织造布作为为FO量身定制的TFC膜的支撑结构。这项工作将进一步使FO这一新兴的膜技术实现更低的水成本和更高的回收率。在实验室中构建这些膜需要综合考虑静电纺丝支架制造和聚酰胺选择层形成的所有方面,因此需要聚合物科学、纳米技术和质量传输方面的专业知识的独特结合。该项目还将导致对支撑层结构如何影响原位聚合过程和所得膜性能的基本理解。PI和co-PI都被认为是FO方面的世界专家,是完成这项拟议工作的唯一合适人选。双方都可以获得专门为本提案中概述的任务定制的设施和专业知识。这个新兴的技术平台将成为康涅狄格大学学生的优秀教育工具。正向渗透是一个多步骤的过程,它依赖于几个单元操作。因此,我们将专门将正向渗透整合到化学工程顶点高级设计课程中,让多个小组有机会竞争使用最少能源和最低资本成本的最佳设计配置。Oasys将赞助康涅狄格大学工程专业学生的实习项目,这将促进康涅狄格大学工程师的就业,并促进长期的学术-工业合作伙伴关系。在21世纪,安全和可持续的供水是人类在公共卫生方面面临的最艰巨的任务。我们必须用可持续的和负担得起的技术来处理受损水源,从而增加现有的水供应。这些问题在发展中国家尤为重要。因此,PI将与康涅狄格大学无国界工程师分会(EWB)合作开展一个独特的项目,在埃塞俄比亚安装商业FO系统,作为远程净水器和教学工具。这项工作将成为通过康涅狄格大学开展的美国国际发展/高等教育署(US- aid /HED)现有项目的一部分。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeffrey McCutcheon其他文献

Forward Osmosis
正向渗透
  • DOI:
    10.1002/9781118932551.ch14
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    9.9
  • 作者:
    Jeffrey McCutcheon;Lingling Xia;Nhu
  • 通讯作者:
    Nhu

Jeffrey McCutcheon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeffrey McCutcheon', 18)}}的其他基金

Collaborative Research: Electrospray Additive Manufacturing of Thin Low Resistance Polyamide-Based Ion Exchange Membranes for Water Treatment
合作研究:水处理用薄型低阻聚酰胺基离子交换膜的电喷雾增材制造
  • 批准号:
    2001544
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
UNS: Graduate Student Support for the North American Membrane Society Annual Meeting
UNS:研究生对北美膜协会年会的支持
  • 批准号:
    1535467
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
REU Site: iREU: Promoting Innovation and Entrepreneurship through Academic-Industrial Partnerships
REU 网站:iREU:通过学术与产业合作促进创新和创业
  • 批准号:
    1156887
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: Modified Reverse Osmosis Membranes for Forward and Pressure Retarded Osmosis
合作研究:用于正向和压力延迟渗透的改良反渗透膜
  • 批准号:
    1160098
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Novel Activated Carbon Nanofiber Biofilm Support for Enhanced Wastewater Treatment
新型活性炭纳米纤维生物膜支持强化废水处理
  • 批准号:
    0933553
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似国自然基金

Novel-miR-1134调控LHCGR的表达介导拟 穴青蟹卵巢发育的机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
novel-miR75靶向OPR2,CA2和STK基因调控人参真菌胁迫响应的分子机制研究
  • 批准号:
    82304677
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
海南广藿香Novel17-GSO1响应p-HBA调控连作障碍的分子机制
  • 批准号:
    82304658
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
白术多糖通过novel-mir2双靶向TRADD/MLKL缓解免疫抑制雏鹅的胸腺程序性坏死
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
novel_circ_008138/rno-miR-374-3p/SFRP4调控Wnt信号通路参与先天性肛门直肠畸形发生的分子机制研究
  • 批准号:
    82070530
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
miRNA-novel-272通过靶向半乳糖凝集素3调控牙鲆肠道上皮细胞炎症反应的机制研究
  • 批准号:
    32002421
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
m6A修饰介导的lncRNA WEE2-AS1转录后novel-pri-miRNA剪切机制在胶质瘤恶性进展中的作用研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
miRNA/novel_167靶向抑制Dmrt1的表达在红鳍东方鲀性别分化过程中的功能研究
  • 批准号:
    31902347
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Novel antiferromagnetic topological spin structures using thin-film multilayer systems and their functionalities
使用薄膜多层系统的新型反铁磁拓扑自旋结构及其功能
  • 批准号:
    23K13655
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Deposition of novel transparent conducting thin films with unusual optoelectronic properties
具有不寻常光电特性的新型透明导电薄膜的沉积
  • 批准号:
    2888596
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
Magnetic garnet thin films: novel properties through interface and site occupancy engineering
磁性石榴石薄膜:通过界面和位点占用工程获得新特性
  • 批准号:
    2323132
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Development of Novel Moisture-, Oxygen- and UV-Blocking Thin Film Coatings on Flexible Plastics for Perovskite Solar Cell Encapsulation
用于钙钛矿太阳能电池封装的柔性塑料上新型防潮、防氧和防紫外线薄膜涂层的开发
  • 批准号:
    575622-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Novel Thin Film and Nanoparticle/Polymer Neuromorphic Devices
新型薄膜和纳米颗粒/聚合物神经形态器件
  • 批准号:
    573607-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    University Undergraduate Student Research Awards
Novel Phases of Transition-Metal Oxides in Heterostructured and Superoxygenated Thin Films
异质结构和超氧化薄膜中过渡金属氧化物的新相
  • 批准号:
    RGPIN-2020-06830
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Novel Phases of Transition-Metal Oxides in Heterostructured and Superoxygenated Thin Films
异质结构和超氧化薄膜中过渡金属氧化物的新相
  • 批准号:
    RGPIN-2020-06830
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Novel Thin Film Biomaterials for Tissue Engineering
用于组织工程的新型薄膜生物材料
  • 批准号:
    RGPIN-2016-06429
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Development of High-performing Nanoplasmonic Biosensors with Novel Thin Films and Metasurfaces
开发具有新型薄膜和超表面的高性能纳米等离子体生物传感器
  • 批准号:
    2109042
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了