Strongly Coupled Fluid-Structure Interaction with Application to Blood Flow in Deformable Arteries

强耦合流固耦合在可变形动脉血流中的应用

基本信息

项目摘要

The research objective of this project is to overcome the deficiencies of the currently used computational technologies by developing spectral/hp finite elements with least-squares formulation and algorithms. The physical interaction of fluids and solids is of practical significance in various branches of engineering. Examples include flutter of aerodynamic structures, structural deformation due to explosions, vortex induced vibrations of sub-sea pipelines and risers, inflatable dams, parachute dynamics, and blood flow through arteries. Since fluids and solids are described by different sets of equations, they are solved independently and the tractions calculated from the fluid flow equations is used as applied force on the structure. Geometric changes of the structure due to the tractions in turn influences the flow characteristics. This two-way coupling can be significant when high-speed flows and/or geometrically complex structures are involved. The present study employs a single computational framework that allows for enhanced compatibility and accuracy in the physical coupling of the fluid and solid. The coupling between the fluid and solid is enforced using implicit strongly coupled partitioned procedures. Blood flow through deformable arteries will be used as a benchmark problem.The developed computational framework has the potential to transform, for example, diagnostic capabilities for the initiation and propagation of blood-related diseases, and aerospace structures design. The research will also revamp some of the courses in structural mechanics and computational methods to include approaches to study fluid-solid interaction problems and enable students to find accurate solutions to societal challenges in designing systems involving fluid-solid couplings.
本项目的研究目标是通过开发具有最小二乘公式和算法的谱/惠普有限元来克服当前使用的计算技术的不足。流体和固体的物理相互作用在工程学的各个分支中都具有实际意义。例如,气动结构的颤振、爆炸引起的结构变形、海底管道和立管的涡激振动、充气坝、降落伞动力学以及通过动脉的血液流动。由于流体和固体是由不同的方程组描述的,所以它们是独立求解的,从流体流动方程计算的牵引力用作对结构的作用力。牵引力引起的结构几何变化反过来又会影响流动特性。当涉及高速流动和/或几何复杂结构时,这种双向耦合可能是重要的。本研究采用了单一的计算框架,从而提高了流体和固体的物理耦合的兼容性和准确性。流体和固体之间的耦合是使用隐式强耦合分区过程来实施的。通过可变形动脉的血液流动将被用作基准问题。开发的计算框架具有改变诊断能力的潜力,例如,血液相关疾病的发起和传播,以及航空航天结构设计。这项研究还将修改一些结构力学和计算方法的课程,包括研究流固相互作用问题的方法,并使学生能够在设计涉及流固耦合的系统时找到准确的社会挑战的解决方案。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Junuthula Reddy其他文献

Junuthula Reddy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Junuthula Reddy', 18)}}的其他基金

IRES Track I: Design, Mechanics and Manufacturing of Active and Sustainable Composite Structures
IRES 轨道 I:活性和可持续复合结构的设计、力学和制造
  • 批准号:
    2246315
  • 财政年份:
    2023
  • 资助金额:
    $ 38.51万
  • 项目类别:
    Standard Grant
A Study of Structure-Process-Property Relationships in BlownPolymeric Films
吹塑聚合物薄膜结构-工艺-性能关系的研究
  • 批准号:
    9713372
  • 财政年份:
    1997
  • 资助金额:
    $ 38.51万
  • 项目类别:
    Continuing Grant
Workshop: Advanced Study Institute on Computational Methods for Engineering Analysis and Design, Madras, August 2-11, 1993, Award in Indian and U.S. Currencies
研讨会:工程分析与设计计算方法高级研究所,马德拉斯,1993 年 8 月 2 日至 11 日,印度和美国货币奖
  • 批准号:
    9396319
  • 财政年份:
    1993
  • 资助金额:
    $ 38.51万
  • 项目类别:
    Standard Grant
Residual Strength of Delaminated Composite Panels Under Compressive Loads, Award in Indian Currency
压缩载荷下分层复合板的残余强度,以印度货币计算的奖项
  • 批准号:
    9396318
  • 财政年份:
    1993
  • 资助金额:
    $ 38.51万
  • 项目类别:
    Continuing Grant
Workshop: Advanced Study Institute on Computational Methods for Engineering Analysis and Design, Madras, August 2-11, 1993, Award in Indian and U.S. Currencies
研讨会:工程分析与设计计算方法高级研究所,马德拉斯,1993 年 8 月 2 日至 11 日,印度和美国货币奖
  • 批准号:
    9209699
  • 财政年份:
    1993
  • 资助金额:
    $ 38.51万
  • 项目类别:
    Standard Grant
Residual Strength of Delaminated Composite Panels Under Compressive Loads, Award in Indian Currency
压缩载荷下分层复合板的残余强度,以印度货币计算的奖项
  • 批准号:
    9209700
  • 财政年份:
    1992
  • 资助金额:
    $ 38.51万
  • 项目类别:
    Continuing Grant
Composites for Aerospace Applications, Indo-U.S. Workshop, Bangalore, India, December 1989, Group Travel Award in Indian and U.S. Currency
航空航天应用复合材料,印度-美国
  • 批准号:
    8912726
  • 财政年份:
    1989
  • 资助金额:
    $ 38.51万
  • 项目类别:
    Standard Grant
Numerical Modeling of Complex Flows with Heat Transfer, Award In Indian and U.S. Currencies
传热复杂流动数值模拟,印度和美国货币奖
  • 批准号:
    8818838
  • 财政年份:
    1989
  • 资助金额:
    $ 38.51万
  • 项目类别:
    Standard Grant
Residual Strength of Delaminated Composite Panels Under Compressive Loads, Awarded in U.S. and Indian Currencies
压缩载荷下分层复合板的残余强度,以美国和印度货币颁发
  • 批准号:
    8908307
  • 财政年份:
    1989
  • 资助金额:
    $ 38.51万
  • 项目类别:
    Continuing Grant
Advanced Study Institute on Finite-Element Analysis for Engineering Design, Madras, India, August 1988, Award in Indian and U.S. Currencies
工程设计有限元分析高级研究所,印度马德拉斯,1988 年 8 月,印度和美国货币奖
  • 批准号:
    8715536
  • 财政年份:
    1988
  • 资助金额:
    $ 38.51万
  • 项目类别:
    Standard Grant

相似海外基金

Understanding Dike Propagation Through Comparison of High-fidelity Coupled Fracture and Fluid Flow Models and Field Observations
通过比较高保真耦合裂缝和流体流动模型以及现场观测来了解堤坝的扩展
  • 批准号:
    2333837
  • 财政年份:
    2024
  • 资助金额:
    $ 38.51万
  • 项目类别:
    Continuing Grant
Exploiting fully coupled fluid-structure interaction: optimal wing heterogeneity and efficient flow state estimation in flapping flight
利用完全耦合的流固相互作用:扑翼飞行中的最佳机翼异质性和有效的流动状态估计
  • 批准号:
    2320875
  • 财政年份:
    2023
  • 资助金额:
    $ 38.51万
  • 项目类别:
    Standard Grant
Modeling of parachute opening process by wind tunnel test and structural coupled fluid analysis
通过风洞试验和结构耦合流体分析对降落伞打开过程进行建模
  • 批准号:
    22K04544
  • 财政年份:
    2022
  • 资助金额:
    $ 38.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Bridging Across Scales and Disciplines: Simulation-based Design and Optimization of Tightly Coupled Thermal/Fluid Systems
跨尺度和学科的桥梁:紧耦合热/流体系统的基于仿真的设计和优化
  • 批准号:
    RGPIN-2019-04798
  • 财政年份:
    2022
  • 资助金额:
    $ 38.51万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Laboratory Data Enabled Phase Field Modeling and Data Assimilation for Coupled Two-Phase Fluid Flow and Porous Media Flow
合作研究:耦合两相流体流和多孔介质流的实验室数据支持相场建模和数据同化
  • 批准号:
    2152623
  • 财政年份:
    2022
  • 资助金额:
    $ 38.51万
  • 项目类别:
    Continuing Grant
Nowcasting weather with coupled fluid dynamics and machine learning
通过耦合流体动力学和机器学习预测临近天气
  • 批准号:
    2749992
  • 财政年份:
    2022
  • 资助金额:
    $ 38.51万
  • 项目类别:
    Studentship
Permafrost thaw-activated groundwater flow in discontinuous permafrost peatlands: Understanding the coupled fluid, thermal, and geochemical fluxes
不连续永久冻土泥炭地中永久冻土融化激活的地下水流:了解耦合的流体、热和地球化学通量
  • 批准号:
    568264-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 38.51万
  • 项目类别:
    Postdoctoral Fellowships
The Diffuse Interface Method and Applications to Coupled Systems in Fluid Dynamics
扩散界面方法及其在流体动力学耦合系统中的应用
  • 批准号:
    2205695
  • 财政年份:
    2022
  • 资助金额:
    $ 38.51万
  • 项目类别:
    Standard Grant
Collaborative Research: Laboratory Data Enabled Phase Field Modeling and Data Assimilation for Coupled Two-Phase Fluid Flow and Porous Media Flow
合作研究:耦合两相流体流和多孔介质流的实验室数据支持相场建模和数据同化
  • 批准号:
    2152609
  • 财政年份:
    2022
  • 资助金额:
    $ 38.51万
  • 项目类别:
    Continuing Grant
Collaborative Research: Two-way Coupled Fluid/Particulate Transport in Fractured Media - Bridging the Scales from Microscopic Origins to Macroscopic Networks
合作研究:断裂介质中的双向耦合流体/颗粒传输 - 连接从微观起源到宏观网络的尺度
  • 批准号:
    2100691
  • 财政年份:
    2021
  • 资助金额:
    $ 38.51万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了