Fourier Analysis and Multilinear Operators
傅里叶分析和多重线性算子
基本信息
- 批准号:1069015
- 负责人:
- 金额:$ 23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-15 至 2015-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The study of multilinear operators has developed largely by the interest in very concrete and naturally appearing examples whose understanding has produced powerful time-frequency tools. The investigator will capitalize on the recent successes and progresses achieved and confront problems that are needed to complete the development of the subject. At the same time novel problems and innovative approaches to study them will be introduced and explored. Singular integrals have played a crucial role in questions related to elliptic regularity, generalized Cauchy-Riemann equations, Sobolev embeddings, Littlewood-Paley theory, and other problems in partial differential equations and the study of function spaces. Multilinear singular integrals represent a next step in the proven successful enterprise of computing operations on functions via their spectral resolution and the understanding of them through the revealing lenses of the Fourier transform. Among the specific goals of the proposal are the study of bilinear or multilinear operators with minimal regularity assumptions; the development of more precise extrapolation and weighted estimates techniques; and the analysis of bilinear multipliers with singularities in the frequency domain not well-understood yet, but which are of critical importance for further progress in the field. Recent work on multilinear operators has already found both foreseen as well as unexpected applications outside harmonic analysis. Some of the questions to be investigated in this proposal can have potential impact in other mathematical disciplines, in particular in partial differential equations. Fourier analysis methods provide ways to analyze information by decomposing it into simple building blocks or wavelike components. Particular operations are easy to perform in these components by exploiting the fact that waves which oscillate at different frequencies do not interact much with each other. This is a basic idea in the analysis of signals and their transformations, and progress in the development of new Fourier analysis techniques often translates into schemes and algorithms for compression of information, pattern recognition, and other application of image processing in science and engineering. The investigator will continue to interact with graduate students and colleagues in the early stages of their careers. His research will be integrated with his teaching, training, and mentoring activities, which include the direction of PhD students working under his supervision. He will also continue to conduct research opportunities for undergraduates and participate as faculty mentor in existing programs to increase student diversity at his institution. The research in this proposal will be disseminated both through professional conferences in the discipline as well as expository lectures to broader audiences, which are intended to increase the awareness about mathematics and science in the general public.
多线性算子的研究主要是通过对非常具体和自然出现的例子的兴趣而发展的,这些例子的理解产生了强大的时频工具。研究者将利用最近取得的成功和进展,并面对完成主题发展所需的问题。与此同时,新的问题和创新的方法来研究他们将被介绍和探索。奇异积分在椭圆正则性、广义柯西-黎曼方程、Sobolev嵌入、Littlewood-Paley理论以及偏微分方程和函数空间研究中的其他问题中起着至关重要的作用。多线性奇异积分代表了通过其光谱分辨率对函数进行计算操作的成功企业的下一步,并通过傅里叶变换的揭示透镜来理解它们。在物种fi c该提案的目标是研究具有最小正则性假设的双线性或多线性算子;开发更精确的外推和加权估计技术;分析频域中具有奇异性的双线性乘数,这些奇异性尚未得到很好的理解,但对该领域的进一步发展至关重要。 最近的工作多线性算子已经发现预见以及意外的应用外谐波分析。在这个建议中要调查的一些问题可能会对其他数学学科产生潜在的影响,特别是在偏微分方程。傅立叶分析方法提供了通过将信息分解为简单的构建块或波状分量来分析信息的方法。通过利用在不同频率下振荡的波彼此不太相互作用的事实,在这些组件中容易执行特定操作。这是信号及其变换分析的基本思想,新傅立叶分析技术的发展通常转化为信息压缩、模式识别和其他科学和工程中图像处理应用的方案和算法。研究人员将继续与研究生和同事在他们的职业生涯的早期阶段互动。他的研究将与他的教学,培训和指导活动相结合,其中包括在他的监督下工作的博士生的方向。他还将继续为本科生提供研究机会,并作为教师导师参与现有项目,以增加他所在机构的学生多样性。该提案中的研究将通过该学科的专业会议以及面向更广泛受众的临时讲座进行传播,旨在提高公众对数学和科学的认识。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rodolfo Torres其他文献
Consenso colombiano para la estratificación, diagnóstico, tratamiento y prevención de la infección por citomegalovirus en pacientes adultos con trasplante renal
哥伦比亚就成人肾移植患者巨细胞病毒感染的评估、诊断、治疗和预防达成共识。
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Jorge E. Cortes;N. Yomayusa;Y. Arias;I. H. Arroyave;J. Cataño;Paola García;F. Guevara;Liliana Mesa;C. Montero;M. Ríos;Adriana Robayo;F. Rosso;Rodolfo Torres;Luis Uribe;L. González;C. Álvarez - 通讯作者:
C. Álvarez
Detection of begomovirus in the stingless bee Trigona fuscipennis visiting Jatropha curcas in the South of Mexico
在访问墨西哥南部麻疯树的无刺蜂 Trigona fuscipennis 中检测到 Begomovirus
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Rodolfo Torres;M. Salvador;E. H. Gallegos;L. D. Arévalo;M. Rincón;J. Grajales - 通讯作者:
J. Grajales
Low dose thymoglobulin versus basiliximab in cytomegalovirus positive kidney transplant recipients: Effectiveness of preemptive cytomegalovirus modified strategy
- DOI:
10.1016/j.nefro.2021.10.001 - 发表时间:
2023-03-01 - 期刊:
- 影响因子:
- 作者:
Camilo Montero;Nancy Yomayusa;Rodolfo Torres;Jorge Cortes;Carlos Alvarez;Juan Gallo;Guillermo Aldana;Andres Acevedo;Maria Rios;Johana Echeverri;Zuly Yepes;Adriana Silva;Diana Gayon;Jorge Perez;Milciades Ibanez - 通讯作者:
Milciades Ibanez
Conversión tardía desde un régimen basado en inhibidores de calcineurina a everolimus en receptores de trasplante renal. Seguimiento a 24 meses.
转换为钙调尿素抑制剂和移植肾受体的依维莫司的方案,时间为 24 小时。
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
C. Montero;G. Aldana;Rodolfo Torres - 通讯作者:
Rodolfo Torres
Low dose thymoglobulin versus basiliximab in cytomegalovirus positive kidney transplant recipients: Effectiveness of preemptive cytomegalovirus modified strategy
- DOI:
10.1016/j.nefroe.2022.11.018 - 发表时间:
2023-03-01 - 期刊:
- 影响因子:
- 作者:
Camilo Montero;Nancy Yomayusa;Rodolfo Torres;Jorge Cortes;Carlos Alvarez;Juan Gallo;Guillermo Aldana;Andres Acevedo;Maria Rios;Johana Echeverri;Zuly Yepes;Adriana Silva;Diana Gayon;Jorge Perez;Milciades Ibanez - 通讯作者:
Milciades Ibanez
Rodolfo Torres的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rodolfo Torres', 18)}}的其他基金
Collaborative Research: EAGER: Automating HERD Reporting Using Machine Learning and Administrative Data
合作研究:EAGER:使用机器学习和管理数据自动化 HERD 报告
- 批准号:
1547464 - 财政年份:2015
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Collaborative Research: Prairie Analysis Seminar 2015-2017
合作研究:2015-2017年草原分析研讨会
- 批准号:
1519016 - 财政年份:2015
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Collaborative Research: Prairie Analysis Seminar 2009-2011
合作研究:2009-2011年草原分析研讨会
- 批准号:
0942775 - 财政年份:2009
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Fourier Analysis Techniques, Operators, and Function Spaces
傅里叶分析技术、运算符和函数空间
- 批准号:
0800492 - 财政年份:2008
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Fourier Analysis Techniques and Applications
傅立叶分析技术及应用
- 批准号:
0400423 - 财政年份:2004
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Multilinear Operators, Discrete Decompositions, and Spectral Resolution of Nanostructures
纳米结构的多线性算子、离散分解和光谱分辨率
- 批准号:
0070514 - 财政年份:2000
- 资助金额:
$ 23万 - 项目类别:
Continuing Grant
Mathematical Sciences: Real Variable Techniques in the Approximation of Functions and Boundary Value Problems in Nonsmooth Domains
数学科学:非光滑域中函数逼近和边值问题的实变量技术
- 批准号:
9623251 - 财政年份:1996
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Mathematical Sciences: Real Variable Techniques in the Approximation of Functions and Boundary Value Problems in Nonsmooth Domains
数学科学:非光滑域中函数逼近和边值问题的实变量技术
- 批准号:
9696267 - 财政年份:1996
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Multilinear Harmonic Analysis and Applications
多线性谐波分析及应用
- 批准号:
2154356 - 财政年份:2022
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Multilinear Operators and Microlocal Analysis of Electrical Impedance Tomography, Radar, and Seismology
电阻抗层析成像、雷达和地震学的多线性算子和微局域分析
- 批准号:
2204943 - 财政年份:2022
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Topics in Harmonic Analysis: Maximal Functions, Singular Integrals, and Multilinear Inequalities
调和分析主题:极大函数、奇异积分和多重线性不等式
- 批准号:
2154835 - 财政年份:2022
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
New developments on the restriction conjecture for the Fourier transform using multilinear analysis
使用多线性分析傅立叶变换限制猜想的新进展
- 批准号:
18F18020 - 财政年份:2018
- 资助金额:
$ 23万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Geometric Harmonic Analysis: Affine and Frobenius-Hormander Geometry for Multilinear Operators
几何调和分析:多线性算子的仿射和 Frobenius-Hormander 几何
- 批准号:
1764143 - 财政年份:2018
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Multilinear harmonic analysis and the singularity
多线性谐波分析和奇异性
- 批准号:
16K05201 - 财政年份:2016
- 资助金额:
$ 23万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A general Bayesian multilinear analysis framework for human behaviour recognition
用于人类行为识别的通用贝叶斯多线性分析框架
- 批准号:
DP120103730 - 财政年份:2012
- 资助金额:
$ 23万 - 项目类别:
Discovery Projects
Weights in multilinear harmonic analysis and partial differential equations
多线性调和分析和偏微分方程中的权重
- 批准号:
1201504 - 财政年份:2012
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Multilinear Operators in Harmonic Analysis
谐波分析中的多线性算子
- 批准号:
23540182 - 财政年份:2011
- 资助金额:
$ 23万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Reseach on multilinear harmonic analysis and its applications
多线性谐波分析及其应用研究
- 批准号:
20540149 - 财政年份:2008
- 资助金额:
$ 23万 - 项目类别:
Grant-in-Aid for Scientific Research (C)