Nonlinear Photonic Crystal Nanocavities and Waveguides

非线性光子晶体纳米腔和波导

基本信息

  • 批准号:
    1101341
  • 负责人:
  • 金额:
    $ 32.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-06-01 至 2014-05-31
  • 项目状态:
    已结题

项目摘要

Objective. Evaluate the efficacy of phosphorous-based MBE-grown layers and quantum dots for quantum-limit strong coupling between a single quantum dot and a photonic crystal slab nanocavity (solid-state entanglement on a chip).Intellectual Merit. Following demonstration of strong coupling in 2004 in Tucson, worldwide progress toward improving the ratio of vacuum Rabi splitting to linewidth, as needed for practical applications in switching and quantum information, has been disappointingly slow. Since the limitation on linewidth is cavity Q, reported values as high as 700,000 for GaAs-slab/GaInP-sacrificial-layer empty cavities compared with typically 30,000 in GaAs/AlGaAs motivate this project to optimize the growth of P-based layers and dots for strong coupling. Success could transform the whole field of semiconductor cavity QED. Much of the P-based growth has been by MOCVD (apparently adequate for electronics and lasers), but the surfaces are too rough for fabrication of high-Q cavities. This project would first grow flat layers for empty high-Q cavities and then grow dots within the center of the slab.Broader Impacts. The principal impact of success would be much more robust semiconductor quantum devices, much less susceptible to dephasing caused by photon escape from low-Q cavities. This would make the devices much more useful for single photon switches and for quantum state transfer between internal states of separated cavities. Training of graduate students in quantum optics and the required experimental skills of cryogenics and spectroscopy is another important impact. Mentoring RET teachers and REU students helps attract bright students into scientific and engineering careers.
客观的。评估磷基 MBE 生长层和量子点对单个量子点和光子晶体板纳米腔(芯片上的固态纠缠)之间的量子极限强耦合的功效。智力优点。继 2004 年在图森展示强耦合之后,世界范围内改善开关和量子信息实际应用所需的真空拉比分裂与线宽之比的进展却进展缓慢,令人失望。由于线宽的限制是腔 Q,据报道,GaAs 板/GaInP 牺牲层空腔的值高达 700,000,而 GaAs/AlGaAs 中的线宽通常为 30,000,这促使该项目优化 P 基层和点的生长,以实现强耦合。成功可能会改变半导体腔 QED 的整个领域。大部分 P 基生长是通过 MOCVD 进行的(显然足以用于电子和激光器),但表面对于制造高 Q 腔来说太粗糙。该项目将首先为空的高 Q 腔生长平坦层,然后在板的中心生长点。更广泛的影响。成功的主要影响将是更加坚固的半导体量子器件,更不易受到低 Q 腔中光子逃逸引起的相移的影响。这将使这些器件对于单光子开关和分离腔内部状态之间的量子状态转移更加有用。对研究生进行量子光学以及低温学和光谱学所需实验技能的培训是另一个重要影响。指导 RET 教师和 REU 学生有助于吸引聪明的学生进入科学和工程职业。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Galina Khitrova其他文献

Excitonic lattice control
激子晶格控制
  • DOI:
    10.1038/nphoton.2009.200
  • 发表时间:
    2009-11-01
  • 期刊:
  • 影响因子:
    32.900
  • 作者:
    Hyatt M. Gibbs;Galina Khitrova
  • 通讯作者:
    Galina Khitrova
Collective radiance
集体光辉
  • DOI:
    10.1038/nphys532
  • 发表时间:
    2007-02-01
  • 期刊:
  • 影响因子:
    18.400
  • 作者:
    Galina Khitrova;Hyatt M. Gibbs
  • 通讯作者:
    Hyatt M. Gibbs
Molecular beam epitaxy grown indium self-assembled plasmonic nanostructures
  • DOI:
    10.1016/j.jcrysgro.2015.02.058
  • 发表时间:
    2015-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ricky Gibson;Michael Gehl;Jasmine Sears;Sander Zandbergen;Nima Nader;Patrick Keiffer;Joshua Hendrickson;Alexandre Arnoult;Galina Khitrova
  • 通讯作者:
    Galina Khitrova

Galina Khitrova的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Galina Khitrova', 18)}}的其他基金

Semiconductor Cavity QED
半导体腔QED
  • 批准号:
    1205301
  • 财政年份:
    2012
  • 资助金额:
    $ 32.58万
  • 项目类别:
    Continuing Grant
Semiconductor Cavity QED
半导体腔QED
  • 批准号:
    1066456
  • 财政年份:
    2011
  • 资助金额:
    $ 32.58万
  • 项目类别:
    Standard Grant
Semiconductor Cavity QED
半导体腔QED
  • 批准号:
    0757707
  • 财政年份:
    2008
  • 资助金额:
    $ 32.58万
  • 项目类别:
    Continuing Grant
Semiconductor Cavity QED
半导体腔QED
  • 批准号:
    0457096
  • 财政年份:
    2005
  • 资助金额:
    $ 32.58万
  • 项目类别:
    Continuing Grant
Dynamics of the Formation of Composite Bosons from Fermions
费米子形成复合玻色子的动力学
  • 批准号:
    0140131
  • 财政年份:
    2002
  • 资助金额:
    $ 32.58万
  • 项目类别:
    Continuing Grant
QUANTUM PANCAKES FOR QUANTUM ENTANGLEMENT
量子纠缠的量子煎饼
  • 批准号:
    9988865
  • 财政年份:
    2000
  • 资助金额:
    $ 32.58万
  • 项目类别:
    Standard Grant
Controlling Polaritons of Quantum Confined Systems
控制量子受限系统的极化子
  • 批准号:
    9876915
  • 财政年份:
    1999
  • 资助金额:
    $ 32.58万
  • 项目类别:
    Continuing Grant
Coherent Control of Quantum-Confined Systems Instrumentation
量子限制系统仪器的相干控制
  • 批准号:
    9871360
  • 财政年份:
    1998
  • 资助金额:
    $ 32.58万
  • 项目类别:
    Standard Grant
Microcavity Physics: Magnetoexciton Quantum-Dot Lasers and Normal-Mode Coupling
微腔物理:磁激子量子点激光器和简正模耦合
  • 批准号:
    9507623
  • 财政年份:
    1995
  • 资助金额:
    $ 32.58万
  • 项目类别:
    Continuing Grant
REG: Conversion of Highly Stabilized CW Ring Dye Laser to Titanium Sapphire
REG:将高度稳定的 CW 环形染料激光器转换为钛蓝宝石
  • 批准号:
    9212832
  • 财政年份:
    1992
  • 资助金额:
    $ 32.58万
  • 项目类别:
    Standard Grant

相似海外基金

Study on implementation of ferroelectric crystal nano-waveguides and nano-integrated nonlinear quantum photonic devices
铁电晶体纳米波导与纳米集成非线性量子光子器件的实现研究
  • 批准号:
    26600116
  • 财政年份:
    2014
  • 资助金额:
    $ 32.58万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Improvements of silicon photonic crystal nanocavity and study on the enhanced nonlinear effect
硅光子晶体纳米腔的改进及增强非线性效应研究
  • 批准号:
    23686015
  • 财政年份:
    2011
  • 资助金额:
    $ 32.58万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
High efficiency nonlinear frequency conversion based photonic crystal light sources
基于高效非线性频率转换的光子晶体光源
  • 批准号:
    1025811
  • 财政年份:
    2010
  • 资助金额:
    $ 32.58万
  • 项目类别:
    Standard Grant
Ringed photonic crystal fibres for broadband nonlinear optics
用于宽带非线性光学的环形光子晶体光纤
  • 批准号:
    FT0991895
  • 财政年份:
    2010
  • 资助金额:
    $ 32.58万
  • 项目类别:
    ARC Future Fellowships
Functional micro-multiplexers based on nonlinear three-dimensional photonic crystal superprisms
基于非线性三维光子晶体超棱镜的功能微复用器
  • 批准号:
    DP0987006
  • 财政年份:
    2009
  • 资助金额:
    $ 32.58万
  • 项目类别:
    Discovery Projects
Nonlinear Photonic Crystal Nanocavities and Waveguides
非线性光子晶体纳米腔和波导
  • 批准号:
    0757975
  • 财政年份:
    2008
  • 资助金额:
    $ 32.58万
  • 项目类别:
    Standard Grant
Nonlinear photonic crystal devices
非线性光子晶体器件
  • 批准号:
    0801684
  • 财政年份:
    2008
  • 资助金额:
    $ 32.58万
  • 项目类别:
    Standard Grant
Highly nonlinear all-optical switches using chalcogenide photonic crystal
使用硫族化物光子晶体的高度非线性全光开关
  • 批准号:
    DP0774658
  • 财政年份:
    2007
  • 资助金额:
    $ 32.58万
  • 项目类别:
    Discovery Projects
Nonlinear photonic crystal fabrication in a high refractive index lithium niobate crystal
高折射率铌酸锂晶体中的非线性光子晶体制造
  • 批准号:
    DP0665868
  • 财政年份:
    2006
  • 资助金额:
    $ 32.58万
  • 项目类别:
    Discovery Projects
Theoretical and Experimental Study on Optical Devices Using Highly Nonlinear Photonic Crystal Fibers
高非线性光子晶体光纤光学器件的理论与实验研究
  • 批准号:
    17360149
  • 财政年份:
    2005
  • 资助金额:
    $ 32.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了