Semiconductor Cavity QED
半导体腔QED
基本信息
- 批准号:1066456
- 负责人:
- 金额:$ 14.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-15 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Cavity quantum electrodynamics (QED), one of the most curious and fundamental aspects of AMO physics, explores quantum dynamical processes for individual quantum objects coupled to the resonator's electromagnetic field: Purcell effect, entanglement, quantum/classical boundary, quantum information science, and quantum teleportation. The biggest experimental bottleneck for atomic cavity QED is the movement of the atom, only recently reduced, but not stopped, by cooling and trapping. Now a semiconductor system has a chance to be better than its atomic counterpart. The cavity QED photonic crystal cavity volume is near the minimum possible for a dielectric, the quality factor is very high, and the quantum dot "atom" does not move. Moreover the structure is totally integrated, i.e., it stays together, so it can be used over and over again. This project focuses on this emerging capability to investigate a solid-state nanosystem (cavity/dot) where individual quanta play decisive roles. This group, the first in the world to see vacuum Rabi splitting due to coupling between a single semiconductor quantum dot and a photonic crystal nanocavity, is exploring two research areas. The first target area is an investigation of the effect of atomic layer deposition of titanium oxide upon the surfaces of silicon nanobeam cavities and GaAs photonic crystal nanocavities. The quality factors of several cavities are being measured before and after the deposition in order to gather statistics on its effect. Success with GaAs-based cavities could be one way to reduce the coupled-system linewidths now dominated by cavity decay rates. The other target area is an alteration of the observed coupling between an array of silver split-ring resonators and a quantum well grown very close to the surface on which the array is fabricated. The dependence of the coupling upon separation between the quantum well and split-ring resonators will be studied at low temperature by pump-probe spectroscopy. This study is part of the PI's general interest in the acceleration of the radiative decay of semiconductor nanostructures by a nearby sub-wavelength metallic structure, as originally suggested by Purcell in his famous paper. This project provides training to graduate students on state-of-the-art instrumentation from nanotechnology to laser technology.
腔量子电动力学(QED)是AMO物理学中最令人好奇和最基本的方面之一,它探索了耦合到谐振器电磁场的单个量子物体的量子动力学过程:珀塞尔效应,纠缠,量子/经典边界,量子信息科学和量子隐形传态。原子腔QED的最大实验瓶颈是原子的运动,最近才通过冷却和捕获减少,但没有停止。现在,半导体系统有机会比原子系统更好。腔QED光子晶体腔体积接近电介质的最小可能,品质因数非常高,量子点“原子”不移动。此外,该结构是完全集成的,即,它会保持在一起,所以可以反复使用。该项目的重点是这种新兴的能力,以调查固态纳米系统(腔/点),其中单个量子发挥决定性作用。这个小组是世界上第一个看到由于单个半导体量子点和光子晶体纳米腔之间的耦合而导致的真空拉比分裂的小组,正在探索两个研究领域。第一个目标领域是硅纳米梁腔和GaAs光子晶体纳米腔表面上的氧化钛原子层沉积的效果的调查。在沉积之前和之后,正在测量几个空腔的品质因数,以便收集关于其效果的统计数据。GaAs基腔的成功可能是减少耦合系统线宽的一种方法,现在主要由腔衰减率。另一个目标区域是观察到的银开口环谐振器阵列和非常靠近制造阵列的表面生长的量子阱之间的耦合的改变。在低温下,利用泵浦-探测光谱研究了量子阱和开口环谐振器之间的耦合对分离的依赖关系。这项研究是PI对加速半导体纳米结构辐射衰减的普遍兴趣的一部分,这是由珀塞尔在他的著名论文中最初提出的。 该项目为研究生提供从纳米技术到激光技术的最先进仪器方面的培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Galina Khitrova其他文献
Excitonic lattice control
激子晶格控制
- DOI:
10.1038/nphoton.2009.200 - 发表时间:
2009-11-01 - 期刊:
- 影响因子:32.900
- 作者:
Hyatt M. Gibbs;Galina Khitrova - 通讯作者:
Galina Khitrova
Collective radiance
集体光辉
- DOI:
10.1038/nphys532 - 发表时间:
2007-02-01 - 期刊:
- 影响因子:18.400
- 作者:
Galina Khitrova;Hyatt M. Gibbs - 通讯作者:
Hyatt M. Gibbs
Molecular beam epitaxy grown indium self-assembled plasmonic nanostructures
- DOI:
10.1016/j.jcrysgro.2015.02.058 - 发表时间:
2015-09-01 - 期刊:
- 影响因子:
- 作者:
Ricky Gibson;Michael Gehl;Jasmine Sears;Sander Zandbergen;Nima Nader;Patrick Keiffer;Joshua Hendrickson;Alexandre Arnoult;Galina Khitrova - 通讯作者:
Galina Khitrova
Galina Khitrova的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Galina Khitrova', 18)}}的其他基金
Nonlinear Photonic Crystal Nanocavities and Waveguides
非线性光子晶体纳米腔和波导
- 批准号:
1101341 - 财政年份:2011
- 资助金额:
$ 14.5万 - 项目类别:
Continuing Grant
Dynamics of the Formation of Composite Bosons from Fermions
费米子形成复合玻色子的动力学
- 批准号:
0140131 - 财政年份:2002
- 资助金额:
$ 14.5万 - 项目类别:
Continuing Grant
QUANTUM PANCAKES FOR QUANTUM ENTANGLEMENT
量子纠缠的量子煎饼
- 批准号:
9988865 - 财政年份:2000
- 资助金额:
$ 14.5万 - 项目类别:
Standard Grant
Controlling Polaritons of Quantum Confined Systems
控制量子受限系统的极化子
- 批准号:
9876915 - 财政年份:1999
- 资助金额:
$ 14.5万 - 项目类别:
Continuing Grant
Coherent Control of Quantum-Confined Systems Instrumentation
量子限制系统仪器的相干控制
- 批准号:
9871360 - 财政年份:1998
- 资助金额:
$ 14.5万 - 项目类别:
Standard Grant
Microcavity Physics: Magnetoexciton Quantum-Dot Lasers and Normal-Mode Coupling
微腔物理:磁激子量子点激光器和简正模耦合
- 批准号:
9507623 - 财政年份:1995
- 资助金额:
$ 14.5万 - 项目类别:
Continuing Grant
REG: Conversion of Highly Stabilized CW Ring Dye Laser to Titanium Sapphire
REG:将高度稳定的 CW 环形染料激光器转换为钛蓝宝石
- 批准号:
9212832 - 财政年份:1992
- 资助金额:
$ 14.5万 - 项目类别:
Standard Grant
相似海外基金
Cavity-QED with multi-species ion crystals
具有多物质离子晶体的腔 QED
- 批准号:
2831123 - 财政年份:2023
- 资助金额:
$ 14.5万 - 项目类别:
Studentship
Spiraling Into Control: Ultra High-Impedance Superconducting Resonators for Strongly-Coupled Spin-Cavity QED
螺旋进入控制:用于强耦合自旋腔 QED 的超高阻抗超导谐振器
- 批准号:
2210309 - 财政年份:2022
- 资助金额:
$ 14.5万 - 项目类别:
Continuing Grant
Study on potential energy surface for gas-phase vibrational strong coupling by IR spectroscopy and cavity-QED theory
红外光谱与腔QED理论研究气相振动强耦合势能面
- 批准号:
21H01879 - 财政年份:2021
- 资助金额:
$ 14.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Integrated optical component design for cavity QED based quantum computing
基于腔 QED 的量子计算集成光学元件设计
- 批准号:
563636-2021 - 财政年份:2021
- 资助金额:
$ 14.5万 - 项目类别:
University Undergraduate Student Research Awards
CAREER: Floquet Route to Non-Equilibrium Phases of Matter in Cavity QED
职业: Floquet 路线到腔内 QED 物质的非平衡相
- 批准号:
1945529 - 财政年份:2020
- 资助金额:
$ 14.5万 - 项目类别:
Continuing Grant
Cavity QED of Spins in Diamond via Dark States
钻石中自旋通过暗态的腔 QED
- 批准号:
2003074 - 财政年份:2020
- 资助金额:
$ 14.5万 - 项目类别:
Standard Grant
Hybrid cavity QED with Rydberg ions and superconducting circuits
具有里德伯离子和超导电路的混合腔 QED
- 批准号:
2257965 - 财政年份:2019
- 资助金额:
$ 14.5万 - 项目类别:
Studentship
OP: Electrically Controlled Solid-State Cavity QED with Single Emitters in Monolayer Material
OP:单层材料中具有单发射极的电控固态腔 QED
- 批准号:
1708579 - 财政年份:2017
- 资助金额:
$ 14.5万 - 项目类别:
Standard Grant
Cavity QED of electron spins in diamond
金刚石中电子自旋的腔 QED
- 批准号:
1604167 - 财政年份:2016
- 资助金额:
$ 14.5万 - 项目类别:
Standard Grant
Controlled few-particle quantum states in an optical cavity QED system (A01)
光腔 QED 系统中受控的少粒子量子态 (A01)
- 批准号:
317070918 - 财政年份:2016
- 资助金额:
$ 14.5万 - 项目类别:
CRC/Transregios