Wall-crossing, stability conditions and mirror symmetry
穿墙、稳定条件和镜像对称
基本信息
- 批准号:1101377
- 负责人:
- 金额:$ 12.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Stability of vector bundles has been a central concept in algebraic geometry since Atiyah initiated their study over 50 years ago. The concept was later extended to coherent sheaves, which are a natural generalization of vector bundles, and can be thought of as a way to allow for vector bundles with singularities. While the notion of stability for coherent sheaves depends on choices, only recently has the space of possible such choices been studied. In particular, due to the seminal work by Bridgeland, we know that there is a manifold of stability conditions, if we are willing to extend our notion of stability from coherent sheaves to complexes of coherent sheaves, i.e., to the derived category. This new concept of stability is motivated by string theory, and mirror symmetry relates it closely to symplectic geometry and properties of the Fukaya category. One focus of this proposal is to work on questions for Bridgeland stability conditions that are suggested by string theory, but don't have a satisfactory mathematical answer yet. For example, the PI will work on constructing a missing class of examples of stability conditions, whose existence is closely related to a notion of stability for D-branes in string theory. Algebraic Geometry is the study of shapes arising as solution sets of systems of polynomial equations. While these are ubiquitous in mathematics, they have also become important in mathematical physics and, more specifically, in string theory. Conversely, insights by string theorists, who approach similar question with different background and intuition, have had an enormous influence on algebraic geometry over the last 20 years. The projects of this proposals will contribute further to this interaction between algebraic geometry and string theory.
矢量束的稳定性一直是代数几何中的一个核心概念,因为Atiyah在50多年前开始了他们的研究。这个概念后来被扩展到相干束,它是向量束的自然推广,可以被认为是一种允许有奇点的向量束的方法。虽然相干轴的稳定性取决于选择,但直到最近才对可能的选择空间进行了研究。特别是,由于bridgeeland的开创性工作,我们知道,如果我们愿意将稳定性的概念从相干束扩展到相干束的复合体,即扩展到派生范畴,则存在多种稳定性条件。这种稳定性的新概念是由弦理论激发的,镜像对称与辛几何和深谷范畴的性质密切相关。这项提议的一个重点是研究弦理论提出的布里奇兰稳定条件问题,但目前还没有一个令人满意的数学答案。例如,PI将致力于构建一类缺失的稳定性条件的例子,其存在与弦理论中d膜的稳定性概念密切相关。代数几何是研究多项式方程组的解集所产生的形状的学科。虽然它们在数学中无处不在,但它们在数学物理中也变得很重要,更具体地说,在弦理论中。相反,弦理论家的见解,他们用不同的背景和直觉来解决类似的问题,在过去的20年里对代数几何产生了巨大的影响。本课题将进一步促进代数几何与弦理论之间的相互作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ralf Schiffler其他文献
The Higher Relation Bimodule
- DOI:
10.1007/s10468-012-9342-6 - 发表时间:
2012-05-27 - 期刊:
- 影响因子:0.600
- 作者:
Ibrahim Assem;Maria Andrea Gatica;Ralf Schiffler - 通讯作者:
Ralf Schiffler
On the Number of τ-Tilting Modules over Nakayama Algebras
- DOI:
10.3842/sigma.2020.058 - 发表时间:
2020 - 期刊:
- 影响因子:
- 作者:
Hanpeng Gao;Ralf Schiffler - 通讯作者:
Ralf Schiffler
On Gorenstein algebras of finite Cohen-Macaulay type: Dimer tree algebras and their skew group algebras
- DOI:
10.1016/j.jalgebra.2024.07.027 - 发表时间:
2024-12-15 - 期刊:
- 影响因子:
- 作者:
Ralf Schiffler;Khrystyna Serhiyenko - 通讯作者:
Khrystyna Serhiyenko
Ralf Schiffler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ralf Schiffler', 18)}}的其他基金
Cluster Algebras, Combinatorics, and Knot Theory
簇代数、组合学和结理论
- 批准号:
2054561 - 财政年份:2021
- 资助金额:
$ 12.6万 - 项目类别:
Standard Grant
International Conference in Representations of Algebras (ICRA XIX)
国际代数表示会议(ICRA XIX)
- 批准号:
2004170 - 财政年份:2020
- 资助金额:
$ 12.6万 - 项目类别:
Standard Grant
Cluster Algebras, Combinatorics, and Knot Theory
簇代数、组合学和结理论
- 批准号:
1800860 - 财政年份:2018
- 资助金额:
$ 12.6万 - 项目类别:
Continuing Grant
CAREER: Cluster algebras, combinatorics and representation theory
职业:簇代数、组合学和表示论
- 批准号:
1254567 - 财政年份:2013
- 资助金额:
$ 12.6万 - 项目类别:
Continuing Grant
Cluster algebras and tilting theory II
簇代数和倾斜理论 II
- 批准号:
1001637 - 财政年份:2010
- 资助金额:
$ 12.6万 - 项目类别:
Continuing Grant
相似国自然基金
Wall crossing现象和内禀Higgs态
- 批准号:11305125
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
ATR signaling activation by the 9-1-1 complexes during mammalian meiosis
哺乳动物减数分裂期间 9-1-1 复合物激活 ATR 信号
- 批准号:
10680036 - 财政年份:2023
- 资助金额:
$ 12.6万 - 项目类别:
Roles for Mismatch Repair Proteins in Maintaining Genome Stability
错配修复蛋白在维持基因组稳定性中的作用
- 批准号:
10591126 - 财政年份:2022
- 资助金额:
$ 12.6万 - 项目类别:
Elucidating Mechanisms of Loss of Heterozygosity in Diploid Cells
阐明二倍体细胞杂合性丧失的机制
- 批准号:
10579177 - 财政年份:2022
- 资助金额:
$ 12.6万 - 项目类别:
Novel Re-engineered L DOPA Probiotic Therapy for Parkinson's Disease
新型重新设计的左旋多巴益生菌疗法治疗帕金森病
- 批准号:
10688149 - 财政年份:2021
- 资助金额:
$ 12.6万 - 项目类别:
RNA-based regulation of TDP-43 nuclear export in ALS/FTD
ALS/FTD 中基于 RNA 的 TDP-43 核输出调控
- 批准号:
10640898 - 财政年份:2021
- 资助金额:
$ 12.6万 - 项目类别:
Roles for Mismatch Repair Proteins in Maintaining Genome Stability
错配修复蛋白在维持基因组稳定性中的作用
- 批准号:
10727007 - 财政年份:2020
- 资助金额:
$ 12.6万 - 项目类别:
Roles for Mismatch Repair Proteins in Maintaining Genome Stability
错配修复蛋白在维持基因组稳定性中的作用
- 批准号:
10544292 - 财政年份:2020
- 资助金额:
$ 12.6万 - 项目类别:
Roles for Mismatch Repair Proteins in Maintaining Genome Stability
错配修复蛋白在维持基因组稳定性中的作用
- 批准号:
10317076 - 财政年份:2020
- 资助金额:
$ 12.6万 - 项目类别:
Roles for Mismatch Repair Proteins in Maintaining Genome Stability
错配修复蛋白在维持基因组稳定性中的作用
- 批准号:
10077565 - 财政年份:2020
- 资助金额:
$ 12.6万 - 项目类别:
Roles for Mismatch Repair Proteins in Maintaining Genome Stability
错配修复蛋白在维持基因组稳定性中的作用
- 批准号:
10619197 - 财政年份:2020
- 资助金额:
$ 12.6万 - 项目类别: