Cluster algebras and tilting theory

簇代数和倾斜理论

基本信息

  • 批准号:
    0908765
  • 负责人:
  • 金额:
    $ 4.33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-11-13 至 2010-08-31
  • 项目状态:
    已结题

项目摘要

The project focuses on the relation between cluster algebras and the representation theory of finite dimensional algebras.Finite dimensional algebras are often described as path algebras of quivers with relations. The modules of the algebra then correspond to the representations of the quiver. Cluster algebras are commutative algebras with a special combinatorial structure. The theory of cluster algebras is a fast developing field which is related to many areas of mathematics. One of its most active branches is its connection to the representation theory of finite dimensional algebras which has been established in the PI's joint work with Caldero and Chapoton and, independently, by Buan, Marsh, Reineke, Reiten and Todorov. Their construction of certain triangulated categories, the cluster categories, has provided unexpected new insights in tilting theory and has given rise to a whole new class of finite dimensional algebras, the cluster-tilted algebras.When cluster algebras were introduced by Fomin and Zelevinsky in 2002,their original motivation came from representation theory, which is abranch of modern algebra that is concerned with the study ofsymmetries of scientific models. Studying the symmetries of a model isoften more fruitful than studying the model directly, andrepresentation theory has found many applications in physics andchemistry, as well as in other mathematical fields. The cluster algebras provide a mathematical framework for fundamental patterns which occur throughout representation theory. Surprisingly, these patterns are also observed in various other branches of science which, a priori, are not related to representation theory. This motivates a further development ofthe theory of cluster algebras to which this project will contribute.
本课题主要研究聚类代数与有限维代数的表示理论之间的关系。有限维代数通常被描述为带关系的颤振的路径代数。然后,代数的模对应于颤振的表示。聚类代数是具有特殊组合结构的交换代数。聚类代数理论是一个快速发展的领域,它涉及到许多数学领域。它最活跃的分支之一是它与有限维代数的表示理论的联系,该理论已在PI与Caldero和Chapoton的联合工作中建立,并且由Buan, Marsh, Reineke, Reiten和Todorov独立建立。他们构造的某些三角化范畴,即簇范畴,为倾斜理论提供了意想不到的新见解,并产生了一类全新的有限维代数,即簇倾斜代数。当Fomin和Zelevinsky在2002年引入聚类代数时,其最初的动机来自于表征理论,表征理论是现代代数的一个分支,主要研究科学模型的对称性。研究模型的对称性往往比直接研究模型更有成效,表征理论在物理和化学以及其他数学领域都有很多应用。聚类代数为整个表示理论中出现的基本模式提供了一个数学框架。令人惊讶的是,这些模式也在与表征理论无关的其他科学分支中被观察到。这激发了群集代数理论的进一步发展,本项目将对此做出贡献。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ralf Schiffler其他文献

The Higher Relation Bimodule
  • DOI:
    10.1007/s10468-012-9342-6
  • 发表时间:
    2012-05-27
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Ibrahim Assem;Maria Andrea Gatica;Ralf Schiffler
  • 通讯作者:
    Ralf Schiffler
On the Number of τ-Tilting Modules over Nakayama Algebras
On Gorenstein algebras of finite Cohen-Macaulay type: Dimer tree algebras and their skew group algebras
  • DOI:
    10.1016/j.jalgebra.2024.07.027
  • 发表时间:
    2024-12-15
  • 期刊:
  • 影响因子:
  • 作者:
    Ralf Schiffler;Khrystyna Serhiyenko
  • 通讯作者:
    Khrystyna Serhiyenko

Ralf Schiffler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ralf Schiffler', 18)}}的其他基金

Cluster Algebras, Combinatorics, and Knot Theory
簇代数、组合学和结理论
  • 批准号:
    2054561
  • 财政年份:
    2021
  • 资助金额:
    $ 4.33万
  • 项目类别:
    Standard Grant
International Conference in Representations of Algebras (ICRA XIX)
国际代数表示会议(ICRA XIX)
  • 批准号:
    2004170
  • 财政年份:
    2020
  • 资助金额:
    $ 4.33万
  • 项目类别:
    Standard Grant
Cluster Algebras, Combinatorics, and Knot Theory
簇代数、组合学和结理论
  • 批准号:
    1800860
  • 财政年份:
    2018
  • 资助金额:
    $ 4.33万
  • 项目类别:
    Continuing Grant
CAREER: Cluster algebras, combinatorics and representation theory
职业:簇代数、组合学和表示论
  • 批准号:
    1254567
  • 财政年份:
    2013
  • 资助金额:
    $ 4.33万
  • 项目类别:
    Continuing Grant
Wall-crossing, stability conditions and mirror symmetry
穿墙、稳定条件和镜像对称
  • 批准号:
    1101377
  • 财政年份:
    2011
  • 资助金额:
    $ 4.33万
  • 项目类别:
    Standard Grant
Cluster algebras and tilting theory II
簇代数和倾斜理论 II
  • 批准号:
    1001637
  • 财政年份:
    2010
  • 资助金额:
    $ 4.33万
  • 项目类别:
    Continuing Grant
Cluster algebras and tilting theory
簇代数和倾斜理论
  • 批准号:
    0700358
  • 财政年份:
    2007
  • 资助金额:
    $ 4.33万
  • 项目类别:
    Standard Grant

相似国自然基金

数学物理中精确可解模型的代数方法
  • 批准号:
    11771015
  • 批准年份:
    2017
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目

相似海外基金

Tilting theory for Artin-Schelter Gorenstein algebras
Artin-Schelter Gorenstein 代数的倾斜理论
  • 批准号:
    22K03222
  • 财政年份:
    2022
  • 资助金额:
    $ 4.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The application of tau-tilting theory to Hecke algebras
tau-倾斜理论在赫克代数中的应用
  • 批准号:
    20J10492
  • 财政年份:
    2020
  • 资助金额:
    $ 4.33万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Tilting theory of gentle algebras via surface combinatorics
基于表面组合的温和代数倾斜理论
  • 批准号:
    19K23401
  • 财政年份:
    2019
  • 资助金额:
    $ 4.33万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Homological Methods and Tilting Theory of Finite Dimensional Algebras
有限维代数的同调方法和倾斜理论
  • 批准号:
    1904770
  • 财政年份:
    2019
  • 资助金额:
    $ 4.33万
  • 项目类别:
    Standard Grant
Cluster theory through derived categories and self-injective algebras
通过派生范畴和自注入代数的聚类理论
  • 批准号:
    18K03238
  • 财政年份:
    2018
  • 资助金额:
    $ 4.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on finite dimensional algebras and combinatorial objects that appear in Lie theory
李理论中出现的有限维代数和组合对象的研究
  • 批准号:
    18K03212
  • 财政年份:
    2018
  • 资助金额:
    $ 4.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mutation in derived categories and lattice theory of torsion classes and wide subcategories
派生范畴的突变以及挠率类和宽子类的格论
  • 批准号:
    17K14160
  • 财政年份:
    2017
  • 资助金额:
    $ 4.33万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
前射影代数の安定圏上の傾対象の研究
原射代数稳定范畴上倾斜物体的研究
  • 批准号:
    15J02465
  • 财政年份:
    2015
  • 资助金额:
    $ 4.33万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Categorification of cluster algebras by quivers with potential
按具有潜力的颤动对簇代数进行分类
  • 批准号:
    26800008
  • 财政年份:
    2014
  • 资助金额:
    $ 4.33万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Cluster algebras and tilting theory II
簇代数和倾斜理论 II
  • 批准号:
    1001637
  • 财政年份:
    2010
  • 资助金额:
    $ 4.33万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了