Cluster Algebras, Combinatorics, and Knot Theory
簇代数、组合学和结理论
基本信息
- 批准号:1800860
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-15 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
When cluster algebras were introduced by Fomin and Zelevinsky in 2002, their original motivation came from representation theory, which is a branch of modern algebra. Studying the symmetries of a model is often more fruitful than studying the model directly, and representation theory has found many applications in physics and chemistry as well as in other mathematical fields. The cluster algebras provide a mathematical framework for fundamental patterns which occur throughout representation theory. Surprisingly, these patterns are also observed in various other branches of science which, a priori, are not related to representation theory. This project will provide new directions of research in an already highly active research area. The investigator will establish and develop relations between cluster algebras and other areas of mathematics. These new connections allow explicit computational results as well as structural development. The project contains the instigation of new ideas as well as the investigation of longstanding open questions.The project focuses on cluster algebras and their relation to combinatorics, knot theory, number theory and representation theory of finite-dimensional algebras. The investigator will pursue several investigations. He will apply his recent discovery of a relation between cluster algebras and continued fractions to study classical problems in number theory from a new point of view and to apply the machinery of continued fractions to develop new tools in cluster algebras. He will also establish and develop a new connection between cluster algebras and knot theory providing explicit combinatorial formulas for Jones polynomials and other knot invariants. Furthermore, he will continue his study of the representation theory of finite-dimensional non-commutative algebras that arise from cluster algebras.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
当簇代数在2002年由Fomin和Zelevinsky引入时,它们的最初动机来自表示论,这是现代代数的一个分支。研究模型的对称性往往比直接研究模型更有成果,表示论在物理和化学以及其他数学领域中有许多应用。簇代数为整个表示论中出现的基本模式提供了一个数学框架。令人惊讶的是,这些模式也在其他科学分支中观察到,先验地,与表征理论无关。该项目将在一个已经非常活跃的研究领域提供新的研究方向。研究人员将建立和发展集群代数和其他数学领域之间的关系。这些新的连接允许明确的计算结果以及结构的发展。该项目包含新思想的激发以及长期未决问题的调查。该项目侧重于簇代数及其与组合学,纽结理论,数论和有限维代数的表示理论的关系。调查员将进行几项调查。他将应用他最近发现的一个关系集群代数和继续分数研究经典问题的数论从一个新的角度来看,并适用于机械的继续分数发展新的工具集群代数。他还将建立和发展集群代数和结理论之间的一个新的连接提供明确的组合公式琼斯多项式和其他结不变。此外,他将继续他的研究表示理论的有限维非交换代数所产生的集群代数。这个奖项反映了美国国家科学基金会的法定使命,并已被认为是值得的支持,通过评估使用该基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hochschild cohomology of partial relation extensions
部分关系扩展的 Hochschild 上同调
- DOI:10.1080/00927872.2018.1461893
- 发表时间:2018
- 期刊:
- 影响因子:0.7
- 作者:Assem, Ibrahim;Gatica, Maria Andrea;Schiffler, Ralf
- 通讯作者:Schiffler, Ralf
A note on sequential walks
关于顺序行走的注意事项
- DOI:10.1090/conm/761
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Assem, Ibrahim;Redondo, Maria Julia;Schiffler, Ralf
- 通讯作者:Schiffler, Ralf
Knot theory and cluster algebras
纽结理论和簇代数
- DOI:10.1016/j.aim.2022.108609
- 发表时间:2022
- 期刊:
- 影响因子:1.7
- 作者:Bazier-Matte, Véronique;Schiffler, Ralf
- 通讯作者:Schiffler, Ralf
Frieze varieties are invariant under Coxeter mutation
饰带品种在 Coxeter 突变下保持不变
- DOI:10.1090/conm/761/15310
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Igusa, Kiyoshi;Schiffler, Ralf
- 通讯作者:Schiffler, Ralf
Continued fractions and orderings on the Markov numbers
马尔可夫数的连分数和排序
- DOI:10.1016/j.aim.2020.107231
- 发表时间:2020
- 期刊:
- 影响因子:1.7
- 作者:Rabideau, Michelle;Schiffler, Ralf
- 通讯作者:Schiffler, Ralf
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ralf Schiffler其他文献
The Higher Relation Bimodule
- DOI:
10.1007/s10468-012-9342-6 - 发表时间:
2012-05-27 - 期刊:
- 影响因子:0.600
- 作者:
Ibrahim Assem;Maria Andrea Gatica;Ralf Schiffler - 通讯作者:
Ralf Schiffler
On the Number of τ-Tilting Modules over Nakayama Algebras
- DOI:
10.3842/sigma.2020.058 - 发表时间:
2020 - 期刊:
- 影响因子:
- 作者:
Hanpeng Gao;Ralf Schiffler - 通讯作者:
Ralf Schiffler
On Gorenstein algebras of finite Cohen-Macaulay type: Dimer tree algebras and their skew group algebras
- DOI:
10.1016/j.jalgebra.2024.07.027 - 发表时间:
2024-12-15 - 期刊:
- 影响因子:
- 作者:
Ralf Schiffler;Khrystyna Serhiyenko - 通讯作者:
Khrystyna Serhiyenko
Ralf Schiffler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ralf Schiffler', 18)}}的其他基金
Cluster Algebras, Combinatorics, and Knot Theory
簇代数、组合学和结理论
- 批准号:
2054561 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
International Conference in Representations of Algebras (ICRA XIX)
国际代数表示会议(ICRA XIX)
- 批准号:
2004170 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
CAREER: Cluster algebras, combinatorics and representation theory
职业:簇代数、组合学和表示论
- 批准号:
1254567 - 财政年份:2013
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Wall-crossing, stability conditions and mirror symmetry
穿墙、稳定条件和镜像对称
- 批准号:
1101377 - 财政年份:2011
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Cluster algebras and tilting theory II
簇代数和倾斜理论 II
- 批准号:
1001637 - 财政年份:2010
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
相似海外基金
Hopf algebras, combinatorics, and operator theory
Hopf 代数、组合数学和算子理论
- 批准号:
RGPIN-2019-05075 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
FRG: Collaborative Research: Extremal Combinatorics and Flag Algebras
FRG:协作研究:极值组合学和标志代数
- 批准号:
2152488 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Extremal Combinatorics and Flag Algebras
FRG:协作研究:极值组合学和标志代数
- 批准号:
2152490 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Extremal Combinatorics and Flag Algebras
FRG:协作研究:极值组合学和标志代数
- 批准号:
2152498 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Combinatorics of finite-dimensional algebras, with applications to scattering amplitudes
有限维代数的组合及其在散射振幅中的应用
- 批准号:
RGPIN-2022-03960 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
Cluster Algebras, Combinatorics, and Knot Theory
簇代数、组合学和结理论
- 批准号:
2054561 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Hopf algebras, combinatorics, and operator theory
Hopf 代数、组合数学和算子理论
- 批准号:
RGPIN-2019-05075 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
Hopf algebras, combinatorics, and operator theory
Hopf 代数、组合数学和算子理论
- 批准号:
RGPIN-2019-05075 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
Representation theory of quantum affine algebras and its applications in geometry and combinatorics
量子仿射代数表示论及其在几何和组合学中的应用
- 批准号:
19K14519 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Tilting theory of gentle algebras via surface combinatorics
基于表面组合的温和代数倾斜理论
- 批准号:
19K23401 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Research Activity Start-up