Adaptive Control Based on the Use of Collective Information from Multiple Models
基于使用多个模型的集体信息的自适应控制
基本信息
- 批准号:1102178
- 负责人:
- 金额:$ 34.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Intellectual Merit:The objective of the proposal is to develop mathematical theory of decision making under uncertainty based on multiple models. How the different views should be combined to arrive at decisions rapidly and accurately at any instant is addressed. Past efforts were based on having a sufficiently large number of experts and basing the current decision on the one proven most successful in the short term. In contrast to such approaches, the proposal deals with novel procedures, in which the decisions of all the experts are weighted to choose the action at any instant. The weights, in turn, depend upon the recent short term performance of all the participants. Simulation studies have indicated that the new approach results in significantly faster and more accurate decisions, and that the latter are more robust even under rapidly changing environments.Broader Impacts:The methodology investigated in the proposal will be applicable to a very large class of problems. In particular, the new technique will find application in Cyber-Physical systems in which vast amounts of data are collected by numerous sensors, and networking problems in which distributed decision makers have to make critical choices in real time. The results obtained from the investigations will be widely disseminated by the PI and his co-workers in national and international conference, and in specialized workshops held at Yale. More importantly, undergraduates will be trained by the PI, both during the academic year and during the summers, in the mathematical foundations of the approach as well as in their application to practical problems.
智力优势:该提案的目标是发展基于多个模型的不确定性下决策的数学理论。如何不同的观点应该结合起来,迅速,准确地在任何时刻作出决定的解决。过去的努力是以拥有足够多的专家为基础的,目前的决定是以短期内证明最成功的决定为基础的。与这些方法相反,该提案涉及新的程序,其中所有专家的决定都被加权以在任何时刻选择行动。权重反过来取决于所有参与者最近的短期表现。模拟研究表明,新的方法的结果显着更快,更准确的决策,后者是更强大的,即使在快速变化的环境。更广泛的影响:在建议中调查的方法将适用于一个非常大的一类问题。特别是,新技术将在网络物理系统中找到应用,其中大量的数据被许多传感器收集,以及网络问题,其中分布式决策者必须在真实的时间作出关键的选择。调查结果将由PI及其同事在国内和国际会议上以及在耶鲁大学举行的专门研讨会上广泛传播。更重要的是,PI将在学年和暑假期间对本科生进行该方法的数学基础及其在实际问题中的应用方面的培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kumpati Narendra其他文献
Kumpati Narendra的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kumpati Narendra', 18)}}的其他基金
Collaborative Research: Mutual Learning: A Systems Theoretic Investigation
协作研究:相互学习:系统理论研究
- 批准号:
1930601 - 财政年份:2019
- 资助金额:
$ 34.82万 - 项目类别:
Standard Grant
How to adapt efficiently using distributed resources and multiple models to time varing dynamic systems
如何使用分布式资源和多个模型有效地适应时变动态系统
- 批准号:
1503751 - 财政年份:2015
- 资助金额:
$ 34.82万 - 项目类别:
Standard Grant
Collaborative Research: Fast reinforcement learning using multiple models and state decompositions for apllications to Plug-in Hybrid Vehicles
协作研究:使用多个模型和状态分解的快速强化学习在插电式混合动力汽车中的应用
- 批准号:
1408279 - 财政年份:2014
- 资助金额:
$ 34.82万 - 项目类别:
Standard Grant
Adaptive Control of Time-Varying Systems Using Multiple Models
使用多个模型的时变系统的自适应控制
- 批准号:
0824118 - 财政年份:2008
- 资助金额:
$ 34.82万 - 项目类别:
Standard Grant
Adaptive Control of Time-Varying Systems Using Multiple Models
使用多个模型的时变系统的自适应控制
- 批准号:
0601618 - 财政年份:2006
- 资助金额:
$ 34.82万 - 项目类别:
Standard Grant
Stability of Switched Dynamical Systems
切换动力系统的稳定性
- 批准号:
0400306 - 财政年份:2004
- 资助金额:
$ 34.82万 - 项目类别:
Standard Grant
Adaptive Identification and Control of Dynamical Systems Using Neural Networks
使用神经网络的动态系统的自适应识别和控制
- 批准号:
0113239 - 财政年份:2001
- 资助金额:
$ 34.82万 - 项目类别:
Standard Grant
Adaptive Identification and Control of Dynamical Systems Using Neural Networks
使用神经网络的动态系统的自适应识别和控制
- 批准号:
9811390 - 财政年份:1998
- 资助金额:
$ 34.82万 - 项目类别:
Standard Grant
Adaptive Identification and Control of Dynamical Systems Using Neural Networks
使用神经网络的动态系统的自适应识别和控制
- 批准号:
9521405 - 财政年份:1995
- 资助金额:
$ 34.82万 - 项目类别:
Continuing Grant
Adaptive Identification and Control of Dynamical Systems Using Neural Networks
使用神经网络的动态系统的自适应识别和控制
- 批准号:
9203928 - 财政年份:1992
- 资助金额:
$ 34.82万 - 项目类别:
Continuing Grant
相似国自然基金
Cortical control of internal state in the insular cortex-claustrum region
- 批准号:
- 批准年份:2020
- 资助金额:25 万元
- 项目类别:
相似海外基金
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
- 批准号:
2338749 - 财政年份:2024
- 资助金额:
$ 34.82万 - 项目类别:
Standard Grant
Self-adaptive and Cooperative Multi-agent Reinforcement Learning-based Network Traffic Control
基于强化学习的自适应协作多智能体网络流量控制
- 批准号:
23K19982 - 财政年份:2023
- 资助金额:
$ 34.82万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Safe Lyapunov-Based Deep Neural Network Adaptive Control of a Rehabilitative Upper Extremity Hybrid Exoskeleton
基于安全李亚普诺夫的深度神经网络自适应控制康复上肢混合外骨骼
- 批准号:
2230971 - 财政年份:2023
- 资助金额:
$ 34.82万 - 项目类别:
Standard Grant
ADAPTIVE MOTIF-BASED CONTROL (AMBC): A FUNDAMENTALLY NEW APPROACH TO AUTOMATED TREATMENT OPTIMIZATION FOR TYPE 1 DIABETES
自适应基序控制 (AMBC):1 型糖尿病自动优化治疗的全新方法
- 批准号:
10684819 - 财政年份:2022
- 资助金额:
$ 34.82万 - 项目类别:
Artificial intelligence based laser polishing with self-optimization, on-line monitoring and adaptive control
基于人工智能的激光抛光,具有自优化、在线监测和自适应控制功能
- 批准号:
570016-2022 - 财政年份:2022
- 资助金额:
$ 34.82万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Towards digital twin based control of water resource recovery facilities - Methods supporting the use of adaptive hybrid digital twins
基于数字孪生的水资源回收设施控制 - 支持使用自适应混合数字孪生的方法
- 批准号:
RGPIN-2021-04347 - 财政年份:2022
- 资助金额:
$ 34.82万 - 项目类别:
Discovery Grants Program - Individual
A Novel Pulse-Amplitude Modulation Control with Fuzzy-based Automatic Excitation Angle and Adaptive Deadtime for Motor Drives in Consideration of Core Loss
考虑磁芯损耗的新型脉冲幅度调制控制,具有基于模糊的自动励磁角和自适应死区时间的电机驱动器
- 批准号:
21K14182 - 财政年份:2021
- 资助金额:
$ 34.82万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Towards digital twin based control of water resource recovery facilities - Methods supporting the use of adaptive hybrid digital twins
基于数字孪生的水资源回收设施控制 - 支持使用自适应混合数字孪生的方法
- 批准号:
RGPIN-2021-04347 - 财政年份:2021
- 资助金额:
$ 34.82万 - 项目类别:
Discovery Grants Program - Individual
Multi-Input Multi-Output Model-Based Adaptive Control with N on-linear models
基于多输入多输出模型的N个非线性模型自适应控制
- 批准号:
2746093 - 财政年份:2021
- 资助金额:
$ 34.82万 - 项目类别:
Studentship
Latent feature evaluation of muscle fatigue based on scale mixture stochastic model and its application to adaptive control of myoelectric prosthetic hand
基于尺度混合随机模型的肌肉疲劳潜特征评估及其在肌电假手自适应控制中的应用
- 批准号:
20K14698 - 财政年份:2020
- 资助金额:
$ 34.82万 - 项目类别:
Grant-in-Aid for Early-Career Scientists