How to adapt efficiently using distributed resources and multiple models to time varing dynamic systems

如何使用分布式资源和多个模型有效地适应时变动态系统

基本信息

  • 批准号:
    1503751
  • 负责人:
  • 金额:
    $ 35.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-01 至 2019-01-31
  • 项目状态:
    已结题

项目摘要

When the environment in which a person or a device is operating is relatively constant, but uncertain, information can be collected slowly and used to make decisions. However, the situation is quite different when critical decisions have to be made rapidly as the environment changes. Such situations arise in medical emergencies, trading in the stock market, conflict management, and taking counter-terror measures. In such cases, there is (i) incomplete information about the situation (ii) uncertain or unreliable information and (iii) limited resources. The aim of the proposed research is to use the given resources as efficiently as possible to find adequate responses. The central idea of the research is to exploit the information coming from distributed sources, and decide at every instant how to combine the information for decision making. Systems that continuously monitor their own performance, and adjust their control strategies to improve the performance are considered. These are both stable and robust for time-invariant plants when the parametric uncertainty is small. However, in recent years the need for analytic tools for reacting effectively to large uncertainties and rapidly varying environments, in the presence of input and output disturbances, has been arising in a variety of fields including biology and medicine, economics and finance, and various engineering problems such as energy management, aircraft and automotive control, and security. In many of these applications, it has been found that classical adaptive algorithms result in large and oscillatory (and possibly unstable) responses. To address such problems, the use of different methods based on multiple models has been proposed by the PI. These include a) Switching b) Switching and Tuning c) Interactive adaptation and d) Second Level adaptation. The first method involves switching between fixed models, while the second method combines adaptive switching and continuous adaptation. The third method is based on novel ways of locating models, while the fourth method confined search of unknown parameters to convex regions. In complex problems, the variations that can occur cannot be classified easily. The proposal attempts to study methods for adapting efficiently by distributing resources.
当一个人或一个设备的操作环境相对恒定但不确定时,可以缓慢收集信息并用于决策。然而,当环境发生变化而必须迅速做出关键决策时,情况就大不相同了。这种情况出现在医疗紧急情况、股票市场交易、冲突管理和采取反恐措施中。在这种情况下,(一)有关情况的信息不完整;(二)信息不确定或不可靠;(三)资源有限。拟议研究的目的是尽可能有效地利用现有资源,找到适当的对策。研究的中心思想是充分利用来自分布式资源的信息,并在每一时刻决定如何将这些信息联合收割机组合起来用于决策。系统不断监测自己的性能,并调整其控制策略,以提高性能。当参数不确定性很小时,这些对于时不变对象是稳定的和鲁棒的。然而,近年来,在各种领域,包括生物学和医学,经济学和金融,以及各种工程问题,如能源管理,飞机和汽车控制,以及安全,在输入和输出干扰的存在下,对分析工具的需求已经出现,以有效地应对大的不确定性和快速变化的环境。在许多这些应用中,已经发现经典的自适应算法导致大的和振荡的(并且可能不稳定的)响应。为了解决这些问题,PI提出了使用基于多个模型的不同方法。其中包括:(1)转换 B)切换和调谐,c)交互式适配和d)第二级适配。第一种方法涉及在固定模型之间切换,而第二种方法结合了自适应切换和连续自适应。第三种方法是基于新的方法定位模型,而第四种方法限制搜索未知参数的凸区域。在复杂的问题中,可能发生的变化无法轻易分类。该提案试图研究通过分配资源来有效适应的方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kumpati Narendra其他文献

Kumpati Narendra的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kumpati Narendra', 18)}}的其他基金

Collaborative Research: Mutual Learning: A Systems Theoretic Investigation
协作研究:相互学习:系统理论研究
  • 批准号:
    1930601
  • 财政年份:
    2019
  • 资助金额:
    $ 35.88万
  • 项目类别:
    Standard Grant
Collaborative Research: Fast reinforcement learning using multiple models and state decompositions for apllications to Plug-in Hybrid Vehicles
协作研究:使用多个模型和状态分解的快速强化学习在插电式混合动力汽车中的应用
  • 批准号:
    1408279
  • 财政年份:
    2014
  • 资助金额:
    $ 35.88万
  • 项目类别:
    Standard Grant
Adaptive Control Based on the Use of Collective Information from Multiple Models
基于使用多个模型的集体信息的自适应控制
  • 批准号:
    1102178
  • 财政年份:
    2011
  • 资助金额:
    $ 35.88万
  • 项目类别:
    Standard Grant
Adaptive Control of Time-Varying Systems Using Multiple Models
使用多个模型的时变系统的自适应控制
  • 批准号:
    0824118
  • 财政年份:
    2008
  • 资助金额:
    $ 35.88万
  • 项目类别:
    Standard Grant
Adaptive Control of Time-Varying Systems Using Multiple Models
使用多个模型的时变系统的自适应控制
  • 批准号:
    0601618
  • 财政年份:
    2006
  • 资助金额:
    $ 35.88万
  • 项目类别:
    Standard Grant
Stability of Switched Dynamical Systems
切换动力系统的稳定性
  • 批准号:
    0400306
  • 财政年份:
    2004
  • 资助金额:
    $ 35.88万
  • 项目类别:
    Standard Grant
Adaptive Identification and Control of Dynamical Systems Using Neural Networks
使用神经网络的动态系统的自适应识别和控制
  • 批准号:
    0113239
  • 财政年份:
    2001
  • 资助金额:
    $ 35.88万
  • 项目类别:
    Standard Grant
Adaptive Identification and Control of Dynamical Systems Using Neural Networks
使用神经网络的动态系统的自适应识别和控制
  • 批准号:
    9811390
  • 财政年份:
    1998
  • 资助金额:
    $ 35.88万
  • 项目类别:
    Standard Grant
Adaptive Identification and Control of Dynamical Systems Using Neural Networks
使用神经网络的动态系统的自适应识别和控制
  • 批准号:
    9521405
  • 财政年份:
    1995
  • 资助金额:
    $ 35.88万
  • 项目类别:
    Continuing Grant
Adaptive Identification and Control of Dynamical Systems Using Neural Networks
使用神经网络的动态系统的自适应识别和控制
  • 批准号:
    9203928
  • 财政年份:
    1992
  • 资助金额:
    $ 35.88万
  • 项目类别:
    Continuing Grant

相似国自然基金

ADAPT技术治疗急性颅内大血管闭塞的成功率相关因素分析
  • 批准号:
    2022J011448
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Adapt innovative deep learning methods from breast cancer to Alzheimers disease
采用从乳腺癌到阿尔茨海默病的创新深度学习方法
  • 批准号:
    10713637
  • 财政年份:
    2023
  • 资助金额:
    $ 35.88万
  • 项目类别:
ADAPT: Adaptive Decision support for Addiction Treatment
ADAPT:成瘾治疗的自适应决策支持
  • 批准号:
    10810953
  • 财政年份:
    2023
  • 资助金额:
    $ 35.88万
  • 项目类别:
RAISE: ADAPT : Novel AI/ML methods to derive CMB temperature and polarization power spectra from uncleaned maps
RAISE:ADAPT:从未清理的地图中导出 CMB 温度和偏振功率谱的新颖 AI/ML 方法
  • 批准号:
    2327245
  • 财政年份:
    2023
  • 资助金额:
    $ 35.88万
  • 项目类别:
    Standard Grant
FIRE-ADAPT: The Role of Integrated Fire Management on Climate Change Adaptation for Ecosystem Services in Tropical and Subtropical Regions
FIRE-ADAPT:综合火灾管理对热带和亚热带地区生态系统服务气候变化适应的作用
  • 批准号:
    EP/X041417/1
  • 财政年份:
    2023
  • 资助金额:
    $ 35.88万
  • 项目类别:
    Research Grant
CO-ADAPT: Adaptive management of endemic coinfections in ruminant livestock under climate change
CO-ADAPT:气候变化下反刍牲畜地方性混合感染的适应性管理
  • 批准号:
    BB/X017567/1
  • 财政年份:
    2023
  • 资助金额:
    $ 35.88万
  • 项目类别:
    Research Grant
Biomimicry as an authentic anchor: Giving teachers the tools to adapt an interdisciplinary middle school curriculum
仿生学作为真正的锚点:为教师提供适应跨学科中学课程的工具
  • 批准号:
    2300433
  • 财政年份:
    2023
  • 资助金额:
    $ 35.88万
  • 项目类别:
    Continuing Grant
How does the mammalian neocortex sense and adapt to metabolic state in health and disease?
哺乳动物新皮质如何感知和适应健康和疾病的代谢状态?
  • 批准号:
    MR/X00743X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 35.88万
  • 项目类别:
    Fellowship
The ADAPT Trial: Adapting Evidence-Based Obesity Interventions in Community Settings
ADAPT 试验:在社区环境中采用循证肥胖干预措施
  • 批准号:
    10585810
  • 财政年份:
    2023
  • 资助金额:
    $ 35.88万
  • 项目类别:
Adult DAy Programs and Their effects on individuals with Dementia and their Caregivers (ADAPT-DemCare): Developing program theories on the how and why
成人日间计划及其对痴呆症患者及其护理人员的影响 (ADAPT-DemCare):制定关于如何以及为何进行的计划理论
  • 批准号:
    492368
  • 财政年份:
    2023
  • 资助金额:
    $ 35.88万
  • 项目类别:
    Operating Grants
Developing AI powered virtual patients in the Mediverse that adapt to learner’s cognitive load to improve learning outcomes for healthcare professionals and medical students.
在 Mediverse 中开发人工智能驱动的虚拟患者,适应学习者的认知负荷,以改善医疗保健专业人员和医学生的学习成果。
  • 批准号:
    10071011
  • 财政年份:
    2023
  • 资助金额:
    $ 35.88万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了