Adaptive Identification and Control of Dynamical Systems Using Neural Networks

使用神经网络的动态系统的自适应识别和控制

基本信息

  • 批准号:
    9811390
  • 负责人:
  • 金额:
    $ 43.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-09-15 至 2001-08-31
  • 项目状态:
    已结题

项目摘要

9811390NarendraThe field of control is inherently interdisciplinary in nature and extends from design, development and production on the one hand to mathematics on the other. The objective of control is to influence the behavior of dynamical systems. Achieving fast and accurate control under different environmental conditions, even while assuring stability and robustness, is the aim of all control systems design.The best developed part of control theory deals with linear systems, and most of the controllers used in modern industry are based on linear control principles. When some of the parameters of the system are unknown, we have an adaptive control problem. The complexity of the problem is substantially greater when the plant characteristics are known but distinctly nonlinear, and becomes truly formidable when some of its parameters/functions are unknown or vary with time. Very few methods currently exist for controlling such systems. However, as applications in industry are becoming more complex and the frontiers of technology are being extended, such problems are being encountered with increasing frequency. This is the case both in well established areas such as process control and aircraft control, as well as new areas such as space technology, robotics, and manufacturing. New methods for addressing such problems using neural networks will be studied in this project.This project consists of four parts. The first part deals with some of the important questions related to neural network based identification and control that require further investigation. In the second part, the problem of control based on pattern recognition, and the use of neural networks in optimal control, are studied. The third part re-examines the question of stability of neural network based control systems. The PI believes that the first three parts are essential for a better understanding of the difficulties encountered in nonlinear adaptive control, and that they will set the stage for the fourth and final part, which contains the main thrust of the work. Here, a detailed study will conducted of the problem of controlling both linear and nonlinear dynamical systems using multiple models, when time variations and external perturbations are present.
9811390 Narendra控制领域本质上是跨学科的,从设计,开发和生产延伸到数学。 控制的目的是影响动力系统的行为。 在不同的环境条件下实现快速和精确的控制,甚至在保证稳定性和鲁棒性的同时,是所有控制系统设计的目标。控制理论中发展最好的部分涉及线性系统,现代工业中使用的大多数控制器都是基于线性控制原理。 当系统的某些参数未知时,我们有一个自适应控制问题。 当植物特性是已知的,但明显的非线性,并成为真正的强大时,它的一些参数/功能是未知的或随时间变化的问题的复杂性是相当大的。 目前存在非常少的用于控制这样的系统的方法。 然而,随着工业中的应用变得越来越复杂,技术前沿不断扩展,越来越频繁地遇到这样的问题。 这在诸如过程控制和飞行器控制等成熟领域以及诸如空间技术、机器人和制造等新领域都是如此。 本计画将研究利用类神经网路解决此等问题的新方法。 第一部分涉及一些重要的问题,需要进一步调查的神经网络为基础的识别和控制。 第二部分研究了基于模式识别的控制问题,以及神经网络在最优控制中的应用。 第三部分重新审视基于神经网络的控制系统的稳定性问题。 PI认为,前三部分对于更好地理解非线性自适应控制中遇到的困难至关重要,并且它们将为第四部分也是最后一部分奠定基础,该部分包含工作的主要内容。 在这里,将进行详细的研究问题的控制线性和非线性动力系统使用多个模型,当时间变化和外部扰动。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kumpati Narendra其他文献

Kumpati Narendra的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kumpati Narendra', 18)}}的其他基金

Collaborative Research: Mutual Learning: A Systems Theoretic Investigation
协作研究:相互学习:系统理论研究
  • 批准号:
    1930601
  • 财政年份:
    2019
  • 资助金额:
    $ 43.63万
  • 项目类别:
    Standard Grant
How to adapt efficiently using distributed resources and multiple models to time varing dynamic systems
如何使用分布式资源和多个模型有效地适应时变动态系统
  • 批准号:
    1503751
  • 财政年份:
    2015
  • 资助金额:
    $ 43.63万
  • 项目类别:
    Standard Grant
Collaborative Research: Fast reinforcement learning using multiple models and state decompositions for apllications to Plug-in Hybrid Vehicles
协作研究:使用多个模型和状态分解的快速强化学习在插电式混合动力汽车中的应用
  • 批准号:
    1408279
  • 财政年份:
    2014
  • 资助金额:
    $ 43.63万
  • 项目类别:
    Standard Grant
Adaptive Control Based on the Use of Collective Information from Multiple Models
基于使用多个模型的集体信息的自适应控制
  • 批准号:
    1102178
  • 财政年份:
    2011
  • 资助金额:
    $ 43.63万
  • 项目类别:
    Standard Grant
Adaptive Control of Time-Varying Systems Using Multiple Models
使用多个模型的时变系统的自适应控制
  • 批准号:
    0824118
  • 财政年份:
    2008
  • 资助金额:
    $ 43.63万
  • 项目类别:
    Standard Grant
Adaptive Control of Time-Varying Systems Using Multiple Models
使用多个模型的时变系统的自适应控制
  • 批准号:
    0601618
  • 财政年份:
    2006
  • 资助金额:
    $ 43.63万
  • 项目类别:
    Standard Grant
Stability of Switched Dynamical Systems
切换动力系统的稳定性
  • 批准号:
    0400306
  • 财政年份:
    2004
  • 资助金额:
    $ 43.63万
  • 项目类别:
    Standard Grant
Adaptive Identification and Control of Dynamical Systems Using Neural Networks
使用神经网络的动态系统的自适应识别和控制
  • 批准号:
    0113239
  • 财政年份:
    2001
  • 资助金额:
    $ 43.63万
  • 项目类别:
    Standard Grant
Adaptive Identification and Control of Dynamical Systems Using Neural Networks
使用神经网络的动态系统的自适应识别和控制
  • 批准号:
    9521405
  • 财政年份:
    1995
  • 资助金额:
    $ 43.63万
  • 项目类别:
    Continuing Grant
Adaptive Identification and Control of Dynamical Systems Using Neural Networks
使用神经网络的动态系统的自适应识别和控制
  • 批准号:
    9203928
  • 财政年份:
    1992
  • 资助金额:
    $ 43.63万
  • 项目类别:
    Continuing Grant

相似国自然基金

相似海外基金

Cooperative and Adaptive Mechatronic Systems: Identification, Control, and Optimization
协作和自适应机电系统:识别、控制和优化
  • 批准号:
    RGPIN-2016-04340
  • 财政年份:
    2021
  • 资助金额:
    $ 43.63万
  • 项目类别:
    Discovery Grants Program - Individual
Cooperative and Adaptive Mechatronic Systems: Identification, Control, and Optimization
协作和自适应机电系统:识别、控制和优化
  • 批准号:
    RGPIN-2016-04340
  • 财政年份:
    2020
  • 资助金额:
    $ 43.63万
  • 项目类别:
    Discovery Grants Program - Individual
Cooperative and Adaptive Mechatronic Systems: Identification, Control, and Optimization
协作和自适应机电系统:识别、控制和优化
  • 批准号:
    RGPIN-2016-04340
  • 财政年份:
    2019
  • 资助金额:
    $ 43.63万
  • 项目类别:
    Discovery Grants Program - Individual
Cooperative and Adaptive Mechatronic Systems: Identification, Control, and Optimization
协作和自适应机电系统:识别、控制和优化
  • 批准号:
    RGPIN-2016-04340
  • 财政年份:
    2018
  • 资助金额:
    $ 43.63万
  • 项目类别:
    Discovery Grants Program - Individual
Cooperative and Adaptive Mechatronic Systems: Identification, Control, and Optimization
协作和自适应机电系统:识别、控制和优化
  • 批准号:
    RGPIN-2016-04340
  • 财政年份:
    2017
  • 资助金额:
    $ 43.63万
  • 项目类别:
    Discovery Grants Program - Individual
Cooperative and Adaptive Mechatronic Systems: Identification, Control, and Optimization
协作和自适应机电系统:识别、控制和优化
  • 批准号:
    RGPIN-2016-04340
  • 财政年份:
    2016
  • 资助金额:
    $ 43.63万
  • 项目类别:
    Discovery Grants Program - Individual
Closed loop model identification and adaptive control on paper machines
造纸机闭环模型辨识与自适应控制
  • 批准号:
    419601-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 43.63万
  • 项目类别:
    Collaborative Research and Development Grants
Modeling, Identification, and Control towards Adaptive Personalized Glucose Management for Insulin-Deficient Diabetes
针对胰岛素缺乏型糖尿病的自适应个性化血糖管理的建模、识别和控制
  • 批准号:
    1200838
  • 财政年份:
    2013
  • 资助金额:
    $ 43.63万
  • 项目类别:
    Standard Grant
Closed loop model identification and adaptive control on paper machines
造纸机闭环模型辨识与自适应控制
  • 批准号:
    419601-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 43.63万
  • 项目类别:
    Collaborative Research and Development Grants
Closed loop model identification and adaptive control on paper machines
造纸机闭环模型辨识与自适应控制
  • 批准号:
    419601-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 43.63万
  • 项目类别:
    Collaborative Research and Development Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了