Shimura varieties, Galois modules and Galois representations

Shimura 簇、伽罗瓦模和伽罗瓦表示

基本信息

  • 批准号:
    1102208
  • 负责人:
  • 金额:
    $ 18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-06-01 至 2015-05-31
  • 项目状态:
    已结题

项目摘要

The PI is attempting to describe integral models for Shimura varieties at primes of non-smooth reduction and study related p-adic spaces. In particular, he investigates the structure of the singularities of Shimura varieties at such primes using methods from the theory of algebraic loop groups and p-adic Hodge theory and he is developing a theory of ``local models" for these varieties. The motivation is to obtain information that can be used in the calculation of their Hasse-Weil zeta functions and in other number theoretic applications. He is also studying closely connected p-adic spaces such as deformation spaces of local Galois representations, Rapoport-Zink spaces and their p-adic cohomology. In addition he is studying the representations that appear in the cohomology of arithmetic varieties with a finite group action and is developing related Riemann-Roch type theorems. In the past, the PI has obtained formulae useful for calculating equivariant Euler characteristics of varieties over the integers with an abelian group action. He is extending his work to the case of non-abelian group actions and he will apply his techniques to deduce information about Galois modules obtained from covers of modular curves. He is also developing refined versions of Riemann-Roch type theorems that allow for calculations of torsion classes, and, in some cases, he is providing local or adelic descriptions of the isomorphisms underlying the Riemann-Roch identities. This is research in the field of arithmetic algebraic geometry,a subject that blends two of the oldest areas of mathematics: the geometry of shapes that can be described by the simplest equations, namely polynomials, and the study of numbers. This combination of disciplines has proved extraordinarily fruitful - having solved problems that withstood generations (such as ``Fermat's last theorem"). The proposal mainly concentrates on the study of specific polynomial equations that have many symmetries. The general field has connections with physics, the construction of error correcting codes and cryptography.
PI试图描述Shimura簇在非光滑约化素数上的积分模型,并研究相关的p-adic空间。特别是,他调查结构的奇异性志村品种在这种素数使用的方法从理论的代数循环群和p进霍奇理论,他正在开发一个理论的“本地模型”这些品种。其动机是为了获得可用于计算其Hasse-Weil zeta函数和其他数论应用的信息。 他还研究密切联系的p进空间,如变形空间的局部伽罗瓦表示,拉波波特,津克空间和他们的p进上同调。此外,他正在研究的代表性,出现在上同调的算术品种与有限群的行动,并正在发展相关的黎曼-罗奇型定理。在过去,PI已经获得了公式,用于计算具有阿贝尔群作用的整数簇的等变欧拉特征。他正在扩大他的工作的情况下,非阿贝尔群行动,他将运用他的技术来推断信息伽罗瓦模块获得覆盖的模块化曲线。他还发展完善版本的黎曼-罗奇型定理,允许计算扭转类,并在某些情况下,他提供当地或adelic描述的同构基础的黎曼-罗奇身份。这是算术代数几何领域的研究,这是一个融合了两个最古老的数学领域的学科:可以用最简单的方程描述的形状的几何,即多项式,以及数字的研究。这种学科的结合已经证明是非常富有成效的-解决了几代人的问题(如“费马最后定理”)。该提案主要集中在研究具有许多对称性的特定多项式方程。一般领域与物理学、纠错码的构造和密码学有关。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Georgios Pappas其他文献

ЯКІСТЬ ВИЩОЇ ОСВІТИ ТА ЕКСПЕРТНИЙ СУПРОВІД ЇЇ ЗАБЕЗПЕЧЕННЯ: ДОСВІД ЄС QUALITY ASSURANCE IN HIGHER EDUCATION AND ITS EXPERT SUPPORT: THE EU EXPERIENCE
高等教育质量保证国家及其专家支持:欧盟的经验
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Georgios Pappas
  • 通讯作者:
    Georgios Pappas
The physical and biogeochemical parameters along the coastal waters of Saudi Arabia during field surveys in summer, 2021
2021年夏季实地调查沙特阿拉伯沿海水域物理和生物地球化学参数
  • DOI:
    10.5194/essd-16-1703-2024
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    11.4
  • 作者:
    Y. Abualnaja;A. Pavlidou;James H. Churchill;Ioannis Hatzianestis;D. Velaoras;H. Kontoyiannis;V. Papadopoulos;A. Karageorgis;Georgia Assimakopoulou;H. Kaberi;Theodoros Kannelopoulos;C. Parinos;C. Zeri;Dionysios Ballas;Elli Pitta;V. Paraskevopoulou;Afroditi Androni;S. Chourdaki;Vassileia Fioraki;S. Iliakis;Georgia Kabouri;Angeliki Konstantinopoulou;G. Krokos;D. Papageorgiou;Alkiviadis Papageorgiou;Georgios Pappas;E. Plakidi;E. Rousselaki;Ioanna Stavrakaki;E. Tzempelikou;P. Zachioti;A. Yfanti;Theodore Zoulias;Abdulah Al Amoudi;Yasser Alshehri;Ahmad Alharbi;Hammad Al Sulami;Taha Boksmati;Rayan Mutwalli;I. Hoteit
  • 通讯作者:
    I. Hoteit
Existing tools used in the framework of environmental performance
环境绩效框架中使用的现有工具
  • DOI:
    10.1016/j.scp.2023.101026
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6
  • 作者:
    I. Papamichael;I. Voukkali;P. Loizia;Georgios Pappas;A. Zorpas
  • 通讯作者:
    A. Zorpas
Horizontal gene transfer confers fermentative metabolism in the respiratory-deficient plant trypanosomatid <em>Phytomonas serpens</em>
  • DOI:
    10.1016/j.meegid.2012.01.016
  • 发表时间:
    2012-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Susan Ienne;Georgios Pappas;Karim Benabdellah;Antonio González;Bianca Zingales
  • 通讯作者:
    Bianca Zingales
Horton’s three sisters: familial clustering of temporal arteritis
  • DOI:
    10.1007/s10067-007-0610-5
  • 发表时间:
    2007-03-27
  • 期刊:
  • 影响因子:
    2.800
  • 作者:
    Lampros Raptis;Georgios Pappas;Nikolaos Akritidis
  • 通讯作者:
    Nikolaos Akritidis

Georgios Pappas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Georgios Pappas', 18)}}的其他基金

Shimura Varieties, p-Adic Shtukas, and Local Systems
志村品种、p-Adic Shtukas 和本地系统
  • 批准号:
    2100743
  • 财政年份:
    2021
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Arithmetic Geometry: Shimura Varieties, Galois Modules, and Iwasawa Theory
算术几何:志村簇、伽罗瓦模和岩泽理论
  • 批准号:
    1701619
  • 财政年份:
    2017
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Chern classes in Iwasawa Theory
FRG:合作研究:岩泽理论中的陈省身课程
  • 批准号:
    1360733
  • 财政年份:
    2014
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Shimura varieties, Galois representations and Riemann-Roch theorems
Shimura 簇、Galois 表示和 Riemann-Roch 定理
  • 批准号:
    0802686
  • 财政年份:
    2008
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Shimura Varieties and Galois Modules
Shimura 簇和伽罗瓦模块
  • 批准号:
    0501049
  • 财政年份:
    2005
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Shimura Varieties, Galois Modules and the Determinant of Cohomology
Shimura 簇、伽罗瓦模和上同调行列式
  • 批准号:
    0201140
  • 财政年份:
    2002
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Shimura Varieties, Galois Modules and L-functions
Shimura 簇、伽罗瓦模块和 L 函数
  • 批准号:
    9970378
  • 财政年份:
    1999
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Arithmetic Models for Shimura Varieties, L-Functions and Cohomology Groups as Integral Representations
数学科学:Shimura 簇、L 函数和上同调群的算术模型作为积分表示
  • 批准号:
    9996393
  • 财政年份:
    1999
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Arithmetic Models for Shimura Varieties, L-Functions and Cohomology Groups as Integral Representations
数学科学:Shimura 簇、L 函数和上同调群的算术模型作为积分表示
  • 批准号:
    9623269
  • 财政年份:
    1996
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Models for Hilbert Varieties and Galois Structure of deRham Cohomology
数学科学:希尔伯特簇模型和 deRham 上同调的伽罗瓦结构
  • 批准号:
    9596104
  • 财政年份:
    1994
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant

相似国自然基金

正则半单Hessenberg varieties上的代数拓扑
  • 批准号:
    11901218
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

p-adic methods in number theory: eigenvarieties and cohomology of Shimura varieties for the study of L-functions and Galois representations
数论中的 p-adic 方法:用于研究 L 函数和伽罗瓦表示的 Shimura 簇的特征簇和上同调
  • 批准号:
    577144-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
    Alliance Grants
Arithmetic Geometry: Shimura Varieties, Galois Modules, and Iwasawa Theory
算术几何:志村簇、伽罗瓦模和岩泽理论
  • 批准号:
    1701619
  • 财政年份:
    2017
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
The geometry of Shimura varieties over positive characteristic and the development of Galois representations
正特征志村簇的几何及伽罗瓦表示的发展
  • 批准号:
    15K04787
  • 财政年份:
    2015
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Shimura Varieties and Galois representations
志村簇和伽罗瓦表示
  • 批准号:
    1301921
  • 财政年份:
    2013
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
International Conference on Galois Representations, Automorphic Forms and Shimura Varieties
伽罗瓦表示、自同构形式和 Shimura 簇国际会议
  • 批准号:
    1134046
  • 财政年份:
    2011
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Shimura varieties, Galois representations and Riemann-Roch theorems
Shimura 簇、Galois 表示和 Riemann-Roch 定理
  • 批准号:
    0802686
  • 财政年份:
    2008
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Comprehensive studies on Shimura varieties, arithmeticgeometry, Galois representations, and automorphic representations
志村簇、算术几何、伽罗瓦表示、自守表示的综合研究
  • 批准号:
    20674001
  • 财政年份:
    2008
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Young Scientists (S)
Shimura Varieties and Galois Modules
Shimura 簇和伽罗瓦模块
  • 批准号:
    0501049
  • 财政年份:
    2005
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Shimura Varieties, Galois Modules and the Determinant of Cohomology
Shimura 簇、伽罗瓦模和上同调行列式
  • 批准号:
    0201140
  • 财政年份:
    2002
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Shimura Varieties, the Trace Formula, Congruences and Galois Representations
志村簇、迹公式、同余式和伽罗瓦表示法
  • 批准号:
    0071404
  • 财政年份:
    2000
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了