Shimura Varieties, p-Adic Shtukas, and Local Systems

志村品种、p-Adic Shtukas 和本地系统

基本信息

  • 批准号:
    2100743
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-05-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

The PI will conduct research in the field of arithmetic algebraic geometry. This is a subject that blends two of the oldest areas of mathematics: The geometry of shapes that can be described by the simplest equations, namely polynomials, and the study of numbers. This combination of disciplines has proved extraordinarily fruitful - having solved problems that withstood generations (such as "Fermat's last theorem"). The general field has connections with physics, and has found important applications to the construction of error correcting codes and cryptography. The PI's work mainly concentrates on the study of specific equations which describe shapes with many symmetries and on connections of the subject with certain constructions in mathematical physics. The PI plans to involve graduate students in some of the projects.The PI is working to describe integral models for Shimura varieties at primes of non-smooth reduction and study related spaces. In particular, he will continue to investigate the singularities of Shimura varieties of abelian type at such primes. He plans to characterize these integral models by using the novel theory of p-adic shtukas and, in the case of orthogonal Shimura varieties, explicitly study the local structure of their reductions. He would also like to interpret Shimura varieties as special cases of more general moduli spaces of "arithmetic shtukas" and to generalize the concept of special points of Shimura varieties to such moduli spaces. Finally, motivated by an analogy with the theory of moduli of bundles over Riemann surfaces as it appears in mathematical physics, the PI will investigate symplectic properties of deformation spaces of local systems and Galois representations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
PI将在算术代数几何领域进行研究。这门学科融合了数学中两个最古老的领域:可以用最简单的方程(即多项式)来描述形状的几何,以及对数字的研究。这些学科的结合被证明是非常富有成效的——解决了几代人经受住考验的问题(比如“费马大定理”)。一般领域与物理学有联系,并在纠错码和密码学的构建中发现了重要的应用。PI的工作主要集中在研究描述具有许多对称性的形状的特定方程,以及研究该学科与数学物理中某些结构的联系。PI计划让研究生参与其中的一些项目。PI的工作是描述非光滑约简素数下Shimura变量的积分模型并研究相关空间。特别是,他将继续研究阿贝尔型的志村变体在这些素数处的奇异性。他计划用新颖的p进shtukas理论来描述这些积分模型,并且在正交Shimura变量的情况下,明确地研究它们约简的局部结构。他还想将志村变数解释为“算术shtukas”的更一般模空间的特例,并将志村变数的特殊点的概念推广到这样的模空间。最后,在与数学物理中出现的黎曼曲面上束的模理论的类比的激励下,PI将研究局部系统和伽罗瓦表示的变形空间的辛性质。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Regular integral models for Shimura varieties of orthogonal type
正交型Shimura品种的正则积分模型
  • DOI:
    10.1112/s0010437x22007370
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Pappas, G.;Zachos, I.
  • 通讯作者:
    Zachos, I.
Volume and symplectic structure for ℓ-adic local systems
α-adic 局部系统的体积和辛结构
  • DOI:
    10.1016/j.aim.2021.107836
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Pappas, Georgios
  • 通讯作者:
    Pappas, Georgios
On integral models of Shimura varieties
志村品种的积分模型
  • DOI:
    10.1007/s00208-022-02387-8
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Pappas, Georgios
  • 通讯作者:
    Pappas, Georgios
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Georgios Pappas其他文献

ЯКІСТЬ ВИЩОЇ ОСВІТИ ТА ЕКСПЕРТНИЙ СУПРОВІД ЇЇ ЗАБЕЗПЕЧЕННЯ: ДОСВІД ЄС QUALITY ASSURANCE IN HIGHER EDUCATION AND ITS EXPERT SUPPORT: THE EU EXPERIENCE
高等教育质量保证国家及其专家支持:欧盟的经验
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Georgios Pappas
  • 通讯作者:
    Georgios Pappas
The physical and biogeochemical parameters along the coastal waters of Saudi Arabia during field surveys in summer, 2021
2021年夏季实地调查沙特阿拉伯沿海水域物理和生物地球化学参数
  • DOI:
    10.5194/essd-16-1703-2024
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    11.4
  • 作者:
    Y. Abualnaja;A. Pavlidou;James H. Churchill;Ioannis Hatzianestis;D. Velaoras;H. Kontoyiannis;V. Papadopoulos;A. Karageorgis;Georgia Assimakopoulou;H. Kaberi;Theodoros Kannelopoulos;C. Parinos;C. Zeri;Dionysios Ballas;Elli Pitta;V. Paraskevopoulou;Afroditi Androni;S. Chourdaki;Vassileia Fioraki;S. Iliakis;Georgia Kabouri;Angeliki Konstantinopoulou;G. Krokos;D. Papageorgiou;Alkiviadis Papageorgiou;Georgios Pappas;E. Plakidi;E. Rousselaki;Ioanna Stavrakaki;E. Tzempelikou;P. Zachioti;A. Yfanti;Theodore Zoulias;Abdulah Al Amoudi;Yasser Alshehri;Ahmad Alharbi;Hammad Al Sulami;Taha Boksmati;Rayan Mutwalli;I. Hoteit
  • 通讯作者:
    I. Hoteit
Existing tools used in the framework of environmental performance
环境绩效框架中使用的现有工具
  • DOI:
    10.1016/j.scp.2023.101026
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6
  • 作者:
    I. Papamichael;I. Voukkali;P. Loizia;Georgios Pappas;A. Zorpas
  • 通讯作者:
    A. Zorpas
Horizontal gene transfer confers fermentative metabolism in the respiratory-deficient plant trypanosomatid <em>Phytomonas serpens</em>
  • DOI:
    10.1016/j.meegid.2012.01.016
  • 发表时间:
    2012-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Susan Ienne;Georgios Pappas;Karim Benabdellah;Antonio González;Bianca Zingales
  • 通讯作者:
    Bianca Zingales
Horton’s three sisters: familial clustering of temporal arteritis
  • DOI:
    10.1007/s10067-007-0610-5
  • 发表时间:
    2007-03-27
  • 期刊:
  • 影响因子:
    2.800
  • 作者:
    Lampros Raptis;Georgios Pappas;Nikolaos Akritidis
  • 通讯作者:
    Nikolaos Akritidis

Georgios Pappas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Georgios Pappas', 18)}}的其他基金

Arithmetic Geometry: Shimura Varieties, Galois Modules, and Iwasawa Theory
算术几何:志村簇、伽罗瓦模和岩泽理论
  • 批准号:
    1701619
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Chern classes in Iwasawa Theory
FRG:合作研究:岩泽理论中的陈省身课程
  • 批准号:
    1360733
  • 财政年份:
    2014
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Shimura varieties, Galois modules and Galois representations
Shimura 簇、伽罗瓦模和伽罗瓦表示
  • 批准号:
    1102208
  • 财政年份:
    2011
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Shimura varieties, Galois representations and Riemann-Roch theorems
Shimura 簇、Galois 表示和 Riemann-Roch 定理
  • 批准号:
    0802686
  • 财政年份:
    2008
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Shimura Varieties and Galois Modules
Shimura 簇和伽罗瓦模块
  • 批准号:
    0501049
  • 财政年份:
    2005
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Shimura Varieties, Galois Modules and the Determinant of Cohomology
Shimura 簇、伽罗瓦模和上同调行列式
  • 批准号:
    0201140
  • 财政年份:
    2002
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Shimura Varieties, Galois Modules and L-functions
Shimura 簇、伽罗瓦模块和 L 函数
  • 批准号:
    9970378
  • 财政年份:
    1999
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Arithmetic Models for Shimura Varieties, L-Functions and Cohomology Groups as Integral Representations
数学科学:Shimura 簇、L 函数和上同调群的算术模型作为积分表示
  • 批准号:
    9996393
  • 财政年份:
    1999
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Arithmetic Models for Shimura Varieties, L-Functions and Cohomology Groups as Integral Representations
数学科学:Shimura 簇、L 函数和上同调群的算术模型作为积分表示
  • 批准号:
    9623269
  • 财政年份:
    1996
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Models for Hilbert Varieties and Galois Structure of deRham Cohomology
数学科学:希尔伯特簇模型和 deRham 上同调的伽罗瓦结构
  • 批准号:
    9596104
  • 财政年份:
    1994
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant

相似国自然基金

正则半单Hessenberg varieties上的代数拓扑
  • 批准号:
    11901218
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

p-adic methods in number theory: eigenvarieties and cohomology of Shimura varieties for the study of L-functions and Galois representations
数论中的 p-adic 方法:用于研究 L 函数和伽罗瓦表示的 Shimura 簇的特征簇和上同调
  • 批准号:
    577144-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Alliance Grants
Shimura varieties - intersection theory, rigid geometry, stratifications and p-adic modular forms
Shimura 品种 - 相交理论、刚性几何、分层和 p-adic 模形式
  • 批准号:
    RGPIN-2014-05614
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Discovery Grants Program - Individual
P-adic Methods in the Arithmetic and Geometry of Shimura Varieties
志村品种算术和几何中的 P-adic 方法
  • 批准号:
    1802169
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Shimura varieties - intersection theory, rigid geometry, stratifications and p-adic modular forms
Shimura 品种 - 相交理论、刚性几何、分层和 p-adic 模形式
  • 批准号:
    RGPIN-2014-05614
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
    Discovery Grants Program - Individual
Shimura varieties - intersection theory, rigid geometry, stratifications and p-adic modular forms
Shimura 品种 - 相交理论、刚性几何、分层和 p-adic 模形式
  • 批准号:
    RGPIN-2014-05614
  • 财政年份:
    2016
  • 资助金额:
    $ 25万
  • 项目类别:
    Discovery Grants Program - Individual
Shimura varieties - intersection theory, rigid geometry, stratifications and p-adic modular forms
Shimura 品种 - 相交理论、刚性几何、分层和 p-adic 模形式
  • 批准号:
    RGPIN-2014-05614
  • 财政年份:
    2015
  • 资助金额:
    $ 25万
  • 项目类别:
    Discovery Grants Program - Individual
The p-adic geometry of Shimura varieties and applications to the Langlands program
Shimura 簇的 p 进几何及其在朗兰兹纲领中的应用
  • 批准号:
    1501064
  • 财政年份:
    2015
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
p-adic Langlands correspondence and p-adic geometry of Shimura varieties
Shimura 变种的 p-adic Langlands 对应和 p-adic 几何
  • 批准号:
    26610003
  • 财政年份:
    2014
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Shimura varieties - intersection theory, rigid geometry, stratifications and p-adic modular forms
Shimura 品种 - 相交理论、刚性几何、分层和 p-adic 模形式
  • 批准号:
    RGPIN-2014-05614
  • 财政年份:
    2014
  • 资助金额:
    $ 25万
  • 项目类别:
    Discovery Grants Program - Individual
Mod p and p-adic Geometry of Shimura Varieties, Canonical Subgroups of Abelian Varieties, and Applications to Automorphic Forms.
Shimura 簇的 Mod p 和 p-adic 几何、阿贝尔簇的规范子群以及自守形式的应用。
  • 批准号:
    EP/H019537/1
  • 财政年份:
    2010
  • 资助金额:
    $ 25万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了