Qualitative Properties of Stochastic Partial Differential Equations

随机偏微分方程的定性性质

基本信息

  • 批准号:
    1102646
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-08-15 至 2015-07-31
  • 项目状态:
    已结题

项目摘要

This proposal deals with three topics in stochastic partial differential equations (SPDE). The first question deals with uniqueness. Unless SPDE have unique solutions, they are useless for modeling. Recent work by the proposer, L. Mytnik, and E. Perkins settled a longstanding question about uniqueness of SPDE related to the heat equation. Using these newly developed tools, the proposer will attack uniqueness questions for other types of equations, and study uniqueness among nonnegative solutions. The second question deals with traveling waves, which occur widely in physical systems. Recently the proposer, L. Mytnik, and J. Quastel have solved a problem raised by Brunet and Derrida, involving the asymptotic speed of traveling waves when the noise term is small. The proposer will would like to extend this analysis to other equations, and related particle systems. The third topic involves stochastic wave equations. The most commonly studied SPDE are variants of the heat equation, but others such as the stochastic wave equation are receiving increasing attention. With D. Geba, the proposer will like to study stochastic wave equations involving null forms. Using some function spaces introduced by Bourgain, the proposer's goal is to study short-time existence. The ideas developed should be relevant to other classes of equations. The field of SPDE is rapidly expanding. As technology moves towards the micro level, the effect of random noise becomes more and more important. Since the most important mathematical modeling tools we have are ordinary and partial differential equations, the study of SPDE is becoming essential in many applied fields. Even though SPDE is now several decades old, the area has only recently received widespread attention. There is still a need for pioneering work to establish a toolbox for the area. This proposal deals with three types of problems in SPDE. The proposer believes that through the study of such specific examples is the right way to generate methods and further our understanding, for both theory and applications. In summary, the proposer believes that SPDE will play an essential role in future applications of mathematics. He wishes to develop the theory and help to train graduate students so that this area can fulfill its potential.
本文研究了随机偏微分方程(SPDE)中的三个问题. 第一个问题涉及独特性。 除非SPDE有独特的解决方案,否则它们对建模毫无用处。 最近的工作由提议者,L。Mytnik和E.珀金斯解决了一个长期存在的问题,即与热方程有关的SPDE的唯一性。 使用这些新开发的工具,提议者将攻击其他类型的方程的唯一性问题,并研究非负解之间的唯一性。 第二个问题涉及行波,它广泛存在于物理系统中。 最近,该提议者L. Mytnik和J. Quastel解决了Brunet和Derrida提出的一个问题,涉及噪声项小时行波的渐近速度。 提议者将希望将这种分析扩展到其他方程和相关的粒子系统。 第三个主题涉及随机波动方程。 最常被研究的SPDE是热方程的变体,但其他如随机波动方程正受到越来越多的关注。 与D. Geba,提议者将喜欢研究涉及零形式的随机波动方程。 利用Bourgain引入的一些函数空间,提出者的目标是研究短时存在性。 所发展的思想应该与其他类型的方程有关。 SPDE的领域正在迅速扩大。 随着技术向微观水平发展,随机噪声的影响变得越来越重要。 由于我们所拥有的最重要的数学建模工具是常微分方程和偏微分方程,因此SPDE的研究在许多应用领域中变得必不可少。 尽管SPDE已经有几十年的历史,但该地区直到最近才受到广泛关注。 仍然需要开展开拓性工作,为该领域建立一个工具箱。 该建议涉及SPDE中的三种类型的问题。 提出者认为,通过研究这些具体的例子是正确的方法,以产生方法和进一步我们的理解,无论是理论和应用。 总之,提出者认为,SPDE将在未来的数学应用中发挥重要作用。 他希望发展这一理论,并帮助培养研究生,使这一领域能够发挥其潜力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carl Mueller其他文献

A connection between Strassen's and Donsker-Varadhan's laws of the iterated logarithm
Strassen's law for local time
TWO DIMENTIONAL OCULOMOTOR PLANT MECHANICAL MODEL ( 2 DOPMM
二维动眼植物机械模型 ( 2 DOPMM
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Jayarathna;B. S. San;Marcos Texas;Oleg V. Komogortsev;Xiao;Chen;Carl Mueller;J. M. Willoughby;Cecilia R. Aragon;Hyong Koh;Munikrishne Gowda Sandeep;Evan Dai;Marcos
  • 通讯作者:
    Marcos
2 CEE 629 – System Identification – Duke
2 CEE 629 – 系统识别 – 杜克大学
A super-Brownian motion with a locally infinite catalytic mass

Carl Mueller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Carl Mueller', 18)}}的其他基金

Finger Lakes Probability Seminar
手指湖概率研讨会
  • 批准号:
    1704163
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
AMC-SS, Collaborative Research: Explorations in Stochastic Moving Boundary Value Problems
AMC-SS,协作研究:随机移动边值问题的探索
  • 批准号:
    0703855
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Stochastic Partial Differential Equations with a Linear Potential
具有线性势的随机偏微分方程
  • 批准号:
    0242770
  • 财政年份:
    2003
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
U.S.-U.K. Cooperative Research: Stochastic Partial Differential Equations Related to Superprocesses
美英合作研究:与超级过程相关的随机偏微分方程
  • 批准号:
    9531159
  • 财政年份:
    1996
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Stochastic Partial Differential Equations
数学科学:随机偏微分方程
  • 批准号:
    9021508
  • 财政年份:
    1991
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Some Problems in Stochastic Analysis
数学科学:随机分析中的一些问题
  • 批准号:
    8703333
  • 财政年份:
    1987
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Nonlinear Stochastic Partial Differential Equations
数学科学:非线性随机偏微分方程
  • 批准号:
    8503389
  • 财政年份:
    1985
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Mathematical Sciences Postdoctoral Research Fellowship
数学科学博士后研究奖学金
  • 批准号:
    7919142
  • 财政年份:
    1979
  • 资助金额:
    $ 30万
  • 项目类别:
    Fellowship Award

相似海外基金

Limit Theorems and Structural Properties of Stochastic Models
随机模型的极限定理和结构性质
  • 批准号:
    2889380
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
Macroscopic properties of discrete stochastic models and analysis of their scaling limits
离散随机模型的宏观性质及其标度极限分析
  • 批准号:
    23KK0050
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
Cut-off phenomenon, ergodicity and other properties for stochastic differential equations of partial, rough and mean-field type.
偏、粗糙和平均场型随机微分方程的截止现象、遍历性和其他性质。
  • 批准号:
    2884422
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
Topics in Smooth Ergodic Theory: Stochastic Properties, Thermodynamic Formalism, Coexistence
平滑遍历理论主题:随机性质、热力学形式主义、共存
  • 批准号:
    2153053
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Properties of Solutions to Singular Stochastic Partial Differential Equations from Quantum Field Theory
职业:量子场论奇异随机偏微分方程解的性质
  • 批准号:
    2044415
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
A study of plasma-material atomistic-scale interactions based on stochastic theory and optimal control of material properties
基于随机理论和材料性能优化控制的等离子体-材料原子尺度相互作用研究
  • 批准号:
    20J22727
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Estimating properties of stochastic differential equations using polynomial optimization
使用多项式优化估计随机微分方程的性质
  • 批准号:
    550229-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    University Undergraduate Student Research Awards
Investigating Properties of Non-Markov Stochastic Processes with Application to Modelling the Dynamics of Financial Markets
研究非马尔可夫随机过程的性质及其在金融市场动态建模中的应用
  • 批准号:
    2328227
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
Stochastic Processes on Rough Spaces and Geometric Properties of Random Sets
粗糙空间上的随机过程和随机集的几何性质
  • 批准号:
    1855349
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Stochastic Processes on Rough Spaces and Geometric Properties of Random Sets
粗糙空间上的随机过程和随机集的几何性质
  • 批准号:
    1951577
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了