Hodge theoretic and algebraic approaches to the theory of motives

动机理论的霍奇理论和代数方法

基本信息

  • 批准号:
    1103269
  • 负责人:
  • 金额:
    $ 16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-07-01 至 2014-06-30
  • 项目状态:
    已结题

项目摘要

The proposed research concerns two topics within the theory of motives and algebraic cycles. The first is Hodge theory. Motivated by work of Mark Green and Phillip Griffiths on the Hodge conjecture and by work of Richard Hain and David Reed on algebraic cycles, the PI and Gregory Pearlstein have defined a sequence of metrized line bundles called biextension line bundles associated to Hodge classes in smooth,projective complex varieties. The main goal of the proposed research is to understand the metrics and the asymptotics of the metric at infinity in the hope of gaining insight into the geometry of moduli spaces and into the Hodge conjecture.The second part of the proposed research concerns cohomological invariants associated to algebraic groups. These are invariants associating to any torsor for an algebra group G over a field F a class in the Galois cohomology of F. Although they seem difficult to compute explicitly, cohomological invariants are very natural objects, and one would hope that they give full information about the torsors for an algebraic group. By an observation of Burt Totaro, the cohomological invariants of a group G are computatable in terms of the motivic cohomology of the classifying space of G. The PI intends to use Totaro's observation to compute cohomological invariants of the spinor group and related groups.The unifying theme in both proposed topics is to understand to what extent problems in algebraic geometry can be linearized and studied using cohomology. The Hodge conjecture, which motivates the first proposed topic, asks if cohomology determines algebraic cycles. Similarly, the second proposed topic asks to what extent cohomological invariants determine torsors. Since linear invariants are usually more tractable than non-linear ones, both topics are of fundamental importance in algebraic geometry and related subjects.
拟议的研究涉及两个主题内的理论动机和代数圈。 第一个是Hodge理论。 受到马克·绿色和菲利普·格里菲思关于霍奇猜想的工作以及理查德·海恩和大卫·里德关于代数循环的工作的启发,PI和格雷戈里·珀尔斯坦定义了一系列度量化的线丛,称为双延线丛,与光滑的射影复簇中的霍奇类相关。 本研究的主要目标是理解度量和度量在无穷远处的渐近性,以期深入了解模空间的几何和Hodge猜想。本研究的第二部分涉及与代数群相关的上同调不变量。 这些不变量与域F上的代数群G的任何torsor相关联,是F的伽罗瓦上同调中的一类。 虽然上同调不变量似乎很难明确计算,但它们是非常自然的对象,人们希望它们能给出代数群的torsors的全部信息。 根据Burt Totaro的一个观察,群G的上同调不变量可以用G的分类空间的动机上同调来计算。 PI打算使用Totaro的观察来计算旋量群和相关群的上同调不变量。这两个主题的统一主题是理解代数几何中的问题在多大程度上可以线性化并使用上同调进行研究。 霍奇猜想,这激发了第一个提出的主题,问如果上同调确定代数循环。同样,第二个提出的主题问到什么程度上同调不变量确定torsors。 由于线性不变量通常比非线性不变量更易处理,因此这两个主题在代数几何和相关学科中具有根本的重要性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Patrick Brosnan其他文献

The essential dimension of a g-dimensional complex abelian variety is 2g
  • DOI:
    10.1007/s00031-006-0045-0
  • 发表时间:
    2007-08-22
  • 期刊:
  • 影响因子:
    0.400
  • 作者:
    Patrick Brosnan
  • 通讯作者:
    Patrick Brosnan
Infantile cortical hyperostosis, Caffey's disease, involving two cousins
  • DOI:
    10.1007/bf00364093
  • 发表时间:
    1979-09-01
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    David K. Yousefzadeh;Patrick Brosnan;Joseph H. Jackson
  • 通讯作者:
    Joseph H. Jackson
Automorphisms and deformations of regular semisimple Hessenberg varieties
正则半单Hessenberg簇的自同构和变形
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Patrick Brosnan;Laura Escobar;Jaehyun Hong;Donggun Lee;Eunjeong Lee;Anton Mellit;Eric Sommers
  • 通讯作者:
    Eric Sommers

Patrick Brosnan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Patrick Brosnan', 18)}}的其他基金

FRG: Collaborative Research: Hodge Theory, Moduli, and Representation Theory
FRG:协作研究:霍奇理论、模数和表示理论
  • 批准号:
    1361159
  • 财政年份:
    2014
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant

相似海外基金

Homotopy theoretic study of algebraic varieties with modulus
带模代数簇的同伦理论研究
  • 批准号:
    22KJ1016
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Conferences on Boolean Algebras, Lattices, Algebraic Logic and Quantum Logic, Universal Algebra, Set Theory, and Set-Theoretic and Point-free Topology
布尔代数、格、代数逻辑和量子逻辑、泛代数、集合论、集合论和无点拓扑会议
  • 批准号:
    2223126
  • 财政年份:
    2022
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant
Studies on singular Hermitian metrics via L2 theoretic methods and their applications to algebraic geometry
L2理论方法研究奇异埃尔米特度量及其在代数几何中的应用
  • 批准号:
    21K20336
  • 财政年份:
    2021
  • 资助金额:
    $ 16万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Algebraic and number theoretic methods for quantum circuits
量子电路的代数和数论方法
  • 批准号:
    RGPIN-2017-05161
  • 财政年份:
    2021
  • 资助金额:
    $ 16万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic and number theoretic methods for quantum circuits
量子电路的代数和数论方法
  • 批准号:
    RGPIN-2017-05161
  • 财政年份:
    2020
  • 资助金额:
    $ 16万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic and decision-theoretic ways into quantum resource theories
量子资源理论的代数和决策理论方法
  • 批准号:
    20K03746
  • 财政年份:
    2020
  • 资助金额:
    $ 16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Algebraic and number theoretic methods for quantum circuits
量子电路的代数和数论方法
  • 批准号:
    RGPIN-2017-05161
  • 财政年份:
    2019
  • 资助金额:
    $ 16万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic and number theoretic methods for quantum circuits
量子电路的代数和数论方法
  • 批准号:
    507937-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 16万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Algebraic and number theoretic methods for quantum circuits
量子电路的代数和数论方法
  • 批准号:
    RGPIN-2017-05161
  • 财政年份:
    2018
  • 资助金额:
    $ 16万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic and number theoretic methods for quantum circuits
量子电路的代数和数论方法
  • 批准号:
    507937-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 16万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了