Geometry and Analysis of Differentiable Manifolds
可微流形的几何与分析
基本信息
- 批准号:1607091
- 负责人:
- 金额:$ 41.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The problems investigated in this project concern various nonlinear differential equations from geometry and physics. These equations are of the evolution type and involve the curvature which measures how a space is curved. They play a fundamental role in understanding the natural world through mathematical means and are closely related to the study of the field theories in physics. They have also found many deep applications in geometry and topology. A famous example is Perelman's solution of the Poincare conjecture by using Ricci flow. The resolution of the problems in this project will provide mathematical foundations for some physical theories and have further profound applications to long-standing mathematical problems such as the classification of algebraic spaces. The most common phenomena of these equations are their singular behaviors due to the nonlinearity of the equations. Such behaviors are reflected in the possible break-downs in the evolution process and described in terms of singular solutions to these equations which describe the evolution process. It is still challenging to have a complete mathematical understanding of these singular solutions. This project will address some basic problems on these singular solutions and explore their applications to geometry and topology. The PI will give lectures and teach graduate courses on topics directly related to this project. He will also run a geometry working seminar with a goal of helping students to gain research experiences and broaden their knowledge in mathematics.This project concerns curvature flows and equations in Riemannian geometry. For Ricci flow, the PI will focus on (1) Finite time singularity formation for its solutions in Kahler geometry; (2) The interaction between the singularity formation and geometry of the underlying spaces; (3) The long-time behavior of the solutions. For the Hermitian curvature flow, the PI will develop new analytic tools to study how it forms singularity. One of most prominent Hermitian curvature flow is the pluriclosed flow which is connected to the renormalization group flow of the nonlinear sigma model with B-field. The PI will further explore this connection and gives new mathematical insights for the duality in the string theory on one hand, new understanding of finite-time singularity on the other hand. For the symplectic curvature flow, the PI intends to study how to characterize the maximal existence of the flow by cohomological condition and how it develops finite-time singularity in dimension 4. The PI also intends to extend the compactness theory for Einstein metrics to a more general class of Kahler metrics and 4-dimensional anti-self-dual metrics. He also continues his study on fundamental problems in symplectic geometry which involve certain gauge equation. The problems include constructing new deformation invariants for symplectic manifolds which admit a Hamiltonian S1-action and providing a mathematical theory for the gauged linear sigma model. These problems are important in symplectic geometry and are inspired by the topological field theories in physics.
该项目研究的问题涉及几何和物理学中的各种非线性微分方程。这些方程属于演化类型,涉及测量空间弯曲程度的曲率。它们在通过数学手段理解自然世界方面发挥着基础作用,并且与物理学中的场论研究密切相关。他们还在几何和拓扑方面发现了许多深入的应用。一个著名的例子是佩雷尔曼利用里奇流解决庞加莱猜想。该项目问题的解决将为一些物理理论提供数学基础,并对代数空间分类等长期存在的数学问题有进一步深刻的应用。这些方程最常见的现象是由于方程的非线性而导致的奇异行为。这些行为反映在进化过程中可能出现的故障中,并用描述进化过程的这些方程的奇异解来描述。对这些奇异解有完整的数学理解仍然具有挑战性。该项目将解决这些奇异解决方案的一些基本问题,并探索它们在几何和拓扑中的应用。 PI 将就与该项目直接相关的主题进行讲座并教授研究生课程。他还将举办一个几何工作研讨会,旨在帮助学生获得研究经验并扩大他们的数学知识。该项目涉及黎曼几何中的曲率流和方程。对于 Ricci 流,PI 将重点关注(1)卡勒几何解的有限时间奇点形成; (2)奇点形成与底层空间几何形状之间的相互作用; (3) 解决方案的长期行为。对于埃尔米特曲率流,PI 将开发新的分析工具来研究它如何形成奇点。最突出的埃尔米特曲率流之一是多闭流,它与 B 场非线性 sigma 模型的重整化群流相关。 PI 将进一步探索这种联系,一方面为弦理论中的对偶性提供新的数学见解,另一方面对有限时间奇点提供新的理解。对于辛曲率流,PI打算研究如何通过上同调条件来表征流的最大存在性以及如何在4维上发展有限时间奇异性。PI还打算将爱因斯坦度量的紧性理论扩展到更一般的Kahler度量和4维反自对偶度量。他还继续研究辛几何中涉及某些规范方程的基本问题。这些问题包括为辛流形构建新的变形不变量(允许哈密顿 S1 作用),并为计量线性 sigma 模型提供数学理论。这些问题在辛几何中很重要,并且受到物理学中拓扑场论的启发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alice Chang其他文献
Would You Like It Hot or Cold? An Analysis of U.S.-China Climate Policy
您想要热的还是冷的?
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Alice Chang - 通讯作者:
Alice Chang
Initiation of Gender-Affirming Testosterone Therapy in a Lactating Transgender Man
对哺乳期跨性别男性进行性别肯定睾酮治疗
- DOI:
10.1177/08903344211037646 - 发表时间:
2021 - 期刊:
- 影响因子:2.6
- 作者:
Sara Oberhelman;Alice Chang;Cesar A Gonzalez;Andrew Braith;Ravinder J Singh;A. Lteif - 通讯作者:
A. Lteif
Short Term Radiographic and Patient Outcomes of a Biplanar Plating System for Triplanar Hallux Valgus Correction
- DOI:
10.1053/j.jfas.2020.06.026 - 发表时间:
2021-05-01 - 期刊:
- 影响因子:
- 作者:
Kshitij Manchanda;Alice Chang;Blake Wallace;Junho Ahn;Yin Xi;George T. Liu;Katherine Raspovic;Michael Van Pelt;Avneesh Chhabra;Dane Wukich;Trapper Lalli - 通讯作者:
Trapper Lalli
Acridinium-Labeling to Latex Microparticles and Application in Chemiluminescence-Based Instrumentation
乳胶微粒的吖啶标记及其在化学发光仪器中的应用
- DOI:
- 发表时间:
1994 - 期刊:
- 影响因子:0
- 作者:
D. Shah;T. Chandra;Alice Chang;Kurt Klosterman;R. Richerson;Charles Keller - 通讯作者:
Charles Keller
Acute treatment of bipolar depression with adjunctive zonisamide: a retrospective chart review.
佐尼沙胺辅助治疗双相抑郁症的急性治疗:回顾性图表回顾。
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:5.4
- 作者:
C. Baldassano;S. Ghaemi;Alice Chang;Alan Lyman;Melissa Lipari - 通讯作者:
Melissa Lipari
Alice Chang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alice Chang', 18)}}的其他基金
Geometric Invariance and Partial Differential Equations
几何不变性和偏微分方程
- 批准号:
1802285 - 财政年份:2018
- 资助金额:
$ 41.13万 - 项目类别:
Standard Grant
Partial differential equations for manifolds with boundary
有边界流形的偏微分方程
- 批准号:
1509505 - 财政年份:2015
- 资助金额:
$ 41.13万 - 项目类别:
Continuing Grant
Non-linear partial differential equations in geometry
几何中的非线性偏微分方程
- 批准号:
1104536 - 财政年份:2011
- 资助金额:
$ 41.13万 - 项目类别:
Continuing Grant
Partial differential equations in conformal and CR geometry
共形和 CR 几何中的偏微分方程
- 批准号:
0758601 - 财政年份:2008
- 资助金额:
$ 41.13万 - 项目类别:
Continuing Grant
Non-linear Partial Differential Equations and Applications to Problems in Geometry
非线性偏微分方程及其在几何问题中的应用
- 批准号:
0245266 - 财政年份:2003
- 资助金额:
$ 41.13万 - 项目类别:
Continuing Grant
Some impact of topology on variational problems
拓扑对变分问题的一些影响
- 批准号:
0209504 - 财政年份:2002
- 资助金额:
$ 41.13万 - 项目类别:
Standard Grant
Higher Order Elliptic Operators and Applications to Problems in Conformal Geometry
高阶椭圆算子及其在共形几何问题中的应用
- 批准号:
0070542 - 财政年份:2000
- 资助金额:
$ 41.13万 - 项目类别:
Continuing Grant
On a Fourth Order PDE - Some Analytic and Geometric Aspects
关于四阶偏微分方程 - 一些解析和几何方面
- 批准号:
9706864 - 财政年份:1997
- 资助金额:
$ 41.13万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 41.13万 - 项目类别:
Continuing Grant
Conference: Southern California Geometric Analysis Seminar
会议:南加州几何分析研讨会
- 批准号:
2406732 - 财政年份:2024
- 资助金额:
$ 41.13万 - 项目类别:
Standard Grant
Design and Analysis of Structure Preserving Discretizations to Simulate Pattern Formation in Liquid Crystals and Ferrofluids
模拟液晶和铁磁流体中图案形成的结构保持离散化的设计和分析
- 批准号:
2409989 - 财政年份:2024
- 资助金额:
$ 41.13万 - 项目类别:
Standard Grant
CRII: AF: Efficiently Computing and Updating Topological Descriptors for Data Analysis
CRII:AF:高效计算和更新数据分析的拓扑描述符
- 批准号:
2348238 - 财政年份:2024
- 资助金额:
$ 41.13万 - 项目类别:
Standard Grant
Advances in rational operations in free analysis
自由分析中理性运算的进展
- 批准号:
2348720 - 财政年份:2024
- 资助金额:
$ 41.13万 - 项目类别:
Standard Grant
Testing Theorems in Analytic Function Theory, Harmonic Analysis and Operator Theory
解析函数论、调和分析和算子理论中的检验定理
- 批准号:
2349868 - 财政年份:2024
- 资助金额:
$ 41.13万 - 项目类别:
Standard Grant
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
- 批准号:
2402028 - 财政年份:2024
- 资助金额:
$ 41.13万 - 项目类别:
Standard Grant
Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
- 批准号:
2402555 - 财政年份:2024
- 资助金额:
$ 41.13万 - 项目类别:
Standard Grant
Conference: Pittsburgh Links among Analysis and Number Theory (PLANT)
会议:匹兹堡分析与数论之间的联系 (PLANT)
- 批准号:
2334874 - 财政年份:2024
- 资助金额:
$ 41.13万 - 项目类别:
Standard Grant
NeTS: Small: ML-Driven Online Traffic Analysis at Multi-Terabit Line Rates
NeTS:小型:ML 驱动的多太比特线路速率在线流量分析
- 批准号:
2331111 - 财政年份:2024
- 资助金额:
$ 41.13万 - 项目类别:
Standard Grant














{{item.name}}会员




