ERI: Representations of Complex Engineering Systems via Technology Recursion and Renormalization Group
ERI:通过技术递归和重整化群表示复杂工程系统
基本信息
- 批准号:2301627
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Engineering Research Initiation (ERI) project aims to supplement essential missing knowledge for representing and managing engineering design problems at large and extreme scales. Inspired by the striking similarities between complex physical systems and complex engineering systems, we will consider primitive technologies as fundamental building blocks that form components, subsystems, systems, and eventually, systems of systems, which is analogous to the hierarchical physical world, where particles form atoms, which in turn form molecules, cells, organisms, planets, and galaxies. This research will establish a rigorous mathematical foundation that enables: (a) systematic investigation of the statistical pattern of technology emergence in the time dimension during and after a given technical project; and (b) dynamic system representation and re-evaluation to interpret potential system behaviors with the existing technology pool. This research establishes a new understanding of the fundamental dynamics of system evolution during the design process and provides a bottom-up perspective to handle unreliable system model representations and unexpected design outcomes for complex engineering systems. We will test the framework using the Apollo and Artemis programs as two applications at extreme scales to investigate technology evolution and the spillover effect during and after each project. This research will generate new knowledge that can enhance our understanding of the underlying causes of cost and schedule overruns at both the technology and system levels. Such insights can inform decision-making processes for future space missions and complex engineering programs in various industries. This project will also strive to engage broader interest in engineering design and space exploration among K-12 students and the public through outreach and diversity initiatives.The overarching goal of this project is to create a novel system representation framework by connecting complex engineering systems with recent breakthroughs in understanding complex physical systems. We will model the engineering design process as the Renormalization Group (RG) transformation, a ubiquitous technique in modern statistic physics that models the behaviors of a system depending on the scale of which it is observed. The research approach is to (R1) understand the technology recursion process in the time dimension; and (R2) create a renormalization scheme in the hierarchy dimension to support dynamic system representation based on the macroscopic design features we are interested in. This research will lead to a new bottom-up approach to resolve epistemic uncertainties during complex engineering system design driven by the lack of knowledge of the correct way to model the system, future design decisions, and technology development outcomes. The research will have broad societal impact by incorporating the rigorous mathematical structure of technology recursion and system dynamics into complex system design to benefit a wide range of industries suffering from high development costs and project schedule overruns (e.g., public infrastructure, healthcare, defense, and aerospace). The integrated education plan involves engineering-focused outreach initiatives, such as pre-college workshops for K-12 students and under-represented minorities to develop broader interest in engineering design and space exploration.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个工程研究启动(ERI)项目旨在补充基本缺失的知识,以代表和管理大规模和极端规模的工程设计问题。受复杂物理系统和复杂工程系统之间惊人相似性的启发,我们将把原始技术视为基本构建块,形成组件、子系统、系统,最终形成系统的系统,这类似于分层的物理世界,粒子形成原子,原子又形成分子、细胞、有机体、行星和星系。这项研究将建立一个严格的数学基础,使:(a)在一个给定的技术项目期间和之后的时间维度的技术出现的统计模式的系统调查;和(B)动态系统表示和重新评估,以解释潜在的系统行为与现有的技术池。这项研究建立了一个新的理解系统演化的基本动力学在设计过程中,并提供了一个自下而上的角度来处理不可靠的系统模型表示和意外的设计结果,复杂的工程系统。我们将使用Apollo和Artemis计划作为两个极端规模的应用程序来测试该框架,以调查每个项目期间和之后的技术演变和溢出效应。这项研究将产生新的知识,可以提高我们的理解的根本原因的成本和进度超支的技术和系统的水平。这些见解可以为未来太空任务和各行业复杂工程项目的决策过程提供信息。该项目还将通过外联和多样性举措,努力吸引K-12学生和公众对工程设计和空间探索的更广泛兴趣。该项目的总体目标是通过将复杂工程系统与最近在理解复杂物理系统方面的突破联系起来,创建一个新颖的系统表示框架。我们将把工程设计过程建模为重整化群(RG)变换,这是现代统计物理学中一种普遍存在的技术,它根据观察到的尺度来模拟系统的行为。研究方法是(R1)在时间维度上理解技术递归过程;(R2)基于我们感兴趣的宏观设计特征,在层次维度上创建一个重正化方案来支持动态系统表示。这项研究将导致一个新的自下而上的方法来解决认知的不确定性,在复杂的工程系统设计驱动的知识缺乏正确的方式来模拟系统,未来的设计决策,和技术开发成果。该研究将通过将技术递归和系统动力学的严格数学结构纳入复杂的系统设计中,以使遭受高开发成本和项目进度超支的各种行业受益,从而产生广泛的社会影响(例如,公共基础设施、医疗保健、国防和航空航天)。该综合教育计划涉及以工程为重点的外展举措,例如为K-12学生和代表性不足的少数族裔举办大学预科研讨会,以培养他们对工程设计和太空探索的更广泛兴趣。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hao Chen其他文献
A multi-objective optimization approach for the selection of overseas oil projects
海外石油项目选择的多目标优化方法
- DOI:
10.1016/j.cie.2020.106977 - 发表时间:
2020-11 - 期刊:
- 影响因子:7.9
- 作者:
Hao Chen;Li Xi-Yu;Lu Xin-Ru;Sheng Ni;Zhou Wei;Geng Hao-Peng;Yu Shiwei - 通讯作者:
Yu Shiwei
Aerosol optical depth and fine-mode fraction retrieval over East Asia using multi-angular total and polarized remote sensing
利用多角度全偏振遥感反演东亚气溶胶光学深度和精细模式分数
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:3.8
- 作者:
Tianhai Cheng;Xingfa Gu;Donghai Xie;Zhengqiang Li;Tao Yu;Hao Chen - 通讯作者:
Hao Chen
Quantification of control rod worth uncertainties propagated from nuclear data via a hybrid high-order perturbation and efficient sampling method
通过混合高阶扰动和高效采样方法对从核数据传播的控制棒价值不确定性进行量化
- DOI:
10.1016/j.anucene.2017.12.049 - 发表时间:
2018-04 - 期刊:
- 影响因子:1.9
- 作者:
Hao Chen;Li Fu;Hu Wenqi;Zhang Yunfei;Zhao Qiang - 通讯作者:
Zhao Qiang
Freeform manufacturing of a progressive addition lens by use of a voice coil fast tool servo
使用音圈快速工具伺服系统自由曲面制造渐进多焦点镜片
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Yi Yu Li;Jiaojie Chen;H. Feng;Chaohong Li;Jia Qu;Hao Chen - 通讯作者:
Hao Chen
Image Classification Model Based on Deep Learning in Internet of Things
物联网中基于深度学习的图像分类模型
- DOI:
10.1155/2020/6677907 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Songshang Zou;Wenshu Chen;Hao Chen - 通讯作者:
Hao Chen
Hao Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hao Chen', 18)}}的其他基金
Making Use of the Curse of Dimensionality in Modern Data Analysis
在现代数据分析中利用维度诅咒
- 批准号:
2311399 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Development of Absolute Quantitative Protein Footprinting Mass Spectrometry (aqPFMS) for Probing Protein 3D Structures
开发用于探测蛋白质 3D 结构的绝对定量蛋白质足迹质谱 (aqPFMS)
- 批准号:
2203284 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Collaborative: Understanding and Detecting Memory Bugs in Rust
SaTC:核心:小:协作:理解和检测 Rust 中的内存错误
- 批准号:
1956364 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CAREER: New Change-Point Problems in Analyzing High-Dimensional and Non-Euclidean Data
职业:分析高维和非欧几里得数据的新变点问题
- 批准号:
1848579 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
SaTC: CORE: Medium: Collaborative: Towards Robust Machine Learning Systems
SaTC:核心:媒介:协作:迈向稳健的机器学习系统
- 批准号:
1801751 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Development of Electrochemical Mass Spectrometry for the Study of Protein Redox Chemistry and Protein Structures
用于研究蛋白质氧化还原化学和蛋白质结构的电化学质谱法的发展
- 批准号:
1915878 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Development of Electrochemical Mass Spectrometry for the Study of Protein Redox Chemistry and Protein Structures
用于研究蛋白质氧化还原化学和蛋白质结构的电化学质谱法的发展
- 批准号:
1709075 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Change-Point Analysis for Multivariate and Object Data
多变量和对象数据的变点分析
- 批准号:
1513653 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CAREER: Development of Microsecond Time-Resolved Mass Spectrometry for the Study of Biochemical Reaction Mechanisms and Kinetics
职业:开发微秒时间分辨质谱用于生化反应机制和动力学研究
- 批准号:
1149367 - 财政年份:2012
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
TC: Small: Designing New Authentication Mechanisms using Hardware Capabilities in Advanced Mobile Devices
TC:小型:使用高级移动设备中的硬件功能设计新的身份验证机制
- 批准号:
1018964 - 财政年份:2010
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似海外基金
From pattern to function: eco-evolutionary representations of complex spatial structure for the new era of spatial biology
从模式到功能:空间生物学新时代复杂空间结构的生态进化表征
- 批准号:
10501428 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Learning Representations for Autonomous Mobile Robotics to Enable Complex Tasks
学习自主移动机器人的表示以实现复杂的任务
- 批准号:
RGPIN-2018-04653 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
From pattern to function: eco-evolutionary representations of complex spatial structure for the new era of spatial biology
从模式到功能:空间生物学新时代复杂空间结构的生态进化表征
- 批准号:
10710177 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Doctoral dissertation research: The encoding, maintenance and retrieval of complex linguistic representations in working memory
博士论文研究:工作记忆中复杂语言表征的编码、维护和检索
- 批准号:
2116952 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Learning Representations for Autonomous Mobile Robotics to Enable Complex Tasks
学习自主移动机器人的表示以实现复杂的任务
- 批准号:
RGPIN-2018-04653 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
Representations, Inference and Learning for Complex Decision Making Under Uncertainty
不确定性下复杂决策的表示、推理和学习
- 批准号:
RGPIN-2016-03858 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
Cycle Representations of Receptor Complex Signal Transduction
受体复合物信号转导的循环表示
- 批准号:
1951646 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Representations, Inference and Learning for Complex Decision Making Under Uncertainty
不确定性下复杂决策的表示、推理和学习
- 批准号:
RGPIN-2016-03858 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
Learning Representations for Autonomous Mobile Robotics to Enable Complex Tasks
学习自主移动机器人的表示以实现复杂的任务
- 批准号:
RGPIN-2018-04653 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
Representations, Inference and Learning for Complex Decision Making Under Uncertainty
不确定性下复杂决策的表示、推理和学习
- 批准号:
RGPIN-2016-03858 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual