FRG: Development and Validation of Novel Computational Tools for Modeling the Growth and Self-Assembly of Crystalline Nanostructures

FRG:用于模拟晶体纳米结构的生长和自组装的新型计算工具的开发和验证

基本信息

项目摘要

TECHNICAL SUMMARY:This award supports theoretical research and educational activities in computational materials science, with a focus on the controlled growth of nanostructured materials.Nanostructured materials, including semiconductor quantum dots and nanowires, hold the promise to yield revolutionary new technologies. The realization of this promise has been hindered to date by the challenges inherent in reproducibly synthesizing and assembling arrays of such nanostructures with controlled morphologies and compositions. Computational modeling is essential for understanding the complex fundamental processes underlying nanostructure growth and self-assembly. However, current state-of-the-art computational methods are not well suited to such studies because of the difficulty in accounting for the atomistic processes that control growth, while simulating over the larger length and time scales associated with self-assembly. The PIs, three materials scientists and a mathematician, propose to develop a new computational methodology that addresses these issues, in order to investigate quantum-dot formation in thin-film heteroepitaxy and nanowire growth mediated by liquid catalysts. This multidisciplinary project addresses the challenge of understanding multiscale phenomena associated with the formation of nanostructures by exploiting recent developments in phase field crystal (PFC) models, which resolve atomic spatial scales on diffusive time scales. The PFC method naturally incorporates elastic/plastic deformations and crystalline defects, and has already been used to simulate interfacial evolution during solid-liquid phase transitions. The team will develop a new PFC-based computational methodology for modeling solid-vapor, liquid-vapor and faceted solid-liquid interfaces, which are commonly present during the growth of crystalline nanostructures. The models will be parameterized and validated with the aid of atomistic simulations and experimental results. Amplitude/phase equations similar to traditional phase field models will be derived to allow larger domains to be simulated. This will reveal how atomistic features and processes affect morphological evolution at larger scales. We will develop new efficient numerical algorithms that will enable simulations of large 3D systems, as well as novel tools for data extraction and visualization. These tools will advance the field of computational materials science by providing a framework for the computational discovery of the fundamental mechanisms underlying synthesis and assembly of nanostructures.Courses on crystal growth for high school students are planned as part of the California State Summer School for Mathematics and Science at UC Irvine, along with additional outreach activities at the Ann Arbor Hands-On Museum. These activities will help develop the future generation of mathematicians, scientists and engineers. Graduate students will receive interdisciplinary training and will present their findings at conferences, enhancing their educational experiences. Furthermore, a symposium on the PFC approach will be organized. In collaboration with the National Institute of Standards and Technology, a FiPy version of the PFC codes will be developed and will be disseminated through their website for use in education and research.NON-TECHNICAL SUMMARY:This award supports theoretical research and educational activities in computational materials science, with a focus on the controlled growth of nanostructured materials.Artificial materials composed of building blocks on the scale of some ten thousand times smaller than the width of a human hair but still larger than an atom can have unique properties and capabilities that differ dramatically from bulk crystalline materials. The properties of these nanostructured materials and their lean tiny cousins, nanostructures, can be controlled through the way the building blocks are arranged; they may even arrange themselves through a process of self-assembly. Nanostructured materials including semiconductor quantum dots and nanowires, hold the promise to yield revolutionary new technologies. Realizing this promise has been hindered by difficulties in controlling their structures and compositions. The use of computers to model nanostructures and nanostructured materials is essential for understanding the complex fundamental processes underlying nanostructure growth and self-assembly. However, current state-of-the-art computational methods are not well suited to such studies because of the difficulty in accounting for the atomic scale processes that control growth, while simulating over the larger length and time scales associated with self-assembly, involving the organization of the building blocks. This grant will support the development of a new computational methodology that addresses these issues, in order to investigate quantum-dot formation and nanowire growth. The team will also develop new efficient numerical algorithms that will enable simulations of large three-dimensional systems, as well as novel tools for data extraction and visualization. These tools will advance the field of computational materials science by providing a framework for computational discovery of the fundamental mechanisms underlying synthesis and assembly of nanostructures.Courses on crystal growth for high school students are proposed as part of the California State Summer School for Mathematics and Science at UC Irvine, and additional outreach activities are planned at the Ann Arbor Hands-On Museum. These activities will help develop the future generation of mathematicians, scientists and engineers. Graduate students will receive interdisciplinary training and will present their findings at conferences, enhancing their educational experiences. Furthermore, a symposium on aforementioned computational techniques will be organized. In collaboration with the National Institute of Standards and Technology, a Python-script version of the simulation software will be developed and will be disseminated through their website for use in education and research.
技术摘要:该奖项支持计算材料科学的理论研究和教育活动,重点是纳米结构材料的受控生长。纳米结构材料,包括半导体量子点和纳米线,有望产生革命性的新技术。迄今为止,这一承诺的实现一直受到可重复合成和组装具有受控形态和成分的纳米结构阵列所固有的挑战的阻碍。计算模型对于理解纳米结构生长和自组装的复杂基本过程至关重要。然而,当前最先进的计算方法不太适合此类研究,因为在模拟与自组装相关的较大长度和时间尺度时,难以解释控制生长的原子过程。 PI 由三名材料科学家和一名数学家组成,提议开发一种新的计算方法来解决这些问题,以便研究液体催化剂介导的薄膜异质外延和纳米线生长中的量子点形成。这个多学科项目通过利用相场晶体(PFC)模型的最新发展来解决理解与纳米结构形成相关的多尺度现象的挑战,该模型在扩散时间尺度上解析原子空间尺度。 PFC 方法自然地结合了弹性/塑性变形和晶体缺陷,并且已用于模拟固液相变期间的界面演化。该团队将开发一种新的基于 PFC 的计算方法,用于模拟固-气、液-气和多面固-液界面,这些界面通常存在于晶体纳米结构的生长过程中。这些模型将借助原子模拟和实验结果进行参数化和验证。将导出类似于传统相场模型的幅度/相位方程,以允许模拟更大的域。这将揭示原子特征和过程如何在更大范围内影响形态进化。我们将开发新的高效数值算法,以实现大型 3D 系统的模拟,以及用于数据提取和可视化的新颖工具。这些工具将通过为纳米结构合成和组装的基本机制的计算发现提供框架,推动计算材料科学领域的发展。作为加州大学欧文分校加州州立数学和科学暑期学校的一部分,计划为高中生开设晶体生长课程,并在安娜堡动手博物馆举办额外的外展活动。这些活动将有助于培养下一代数学家、科学家和工程师。研究生将接受跨学科培训,并将在会议上展示他们的研究结果,以增强他们的教育经验。此外,还将组织一次关于 PFC 方法的研讨会。 与美国国家标准与技术研究所合作,将开发 PFC 代码的 FiPy 版本,并将通过其网站传播,用于教育和研究。非技术摘要:该奖项支持计算材料科学的理论研究和教育活动,重点是纳米结构材料的受控生长。由结构块组成的人造材料,其尺寸比人类头发的宽度小约一万倍,但仍大于人类头发的宽度 原子可以具有与块状晶体材料显着不同的独特性质和功能。这些纳米结构材料及其瘦小的近亲纳米结构的特性可以通过构建块的排列方式来控制;它们甚至可以通过自我组装的过程来排列自己。包括半导体量子点和纳米线在内的纳米结构材料有望产生革命性的新技术。控制其结构和成分方面的困难阻碍了这一承诺的实现。 使用计算机模拟纳米结构和纳米结构材料对于理解纳米结构生长和自组装的复杂基本过程至关重要。然而,当前最先进的计算方法不太适合此类研究,因为难以解释控制生长的原子尺度过程,同时模拟与自组装相关的较大长度和时间尺度,涉及构建块的组织。这笔赠款将支持开发一种解决这些问题的新计算方法,以研究量子点的形成和纳米线的生长。该团队还将开发新的高效数值算法,以实现大型三维系统的模拟,以及用于数据提取和可视化的新颖工具。这些工具将通过为计算发现纳米结构合成和组装的基本机制提供一个框架,推动计算材料科学领域的发展。作为加州大学欧文分校加州数学与科学暑期学校的一部分,提议为高中生开设晶体生长课程,并计划在安娜堡动手博物馆举办更多外展活动。这些活动将有助于培养下一代数学家、科学家和工程师。研究生将接受跨学科培训,并将在会议上展示他们的研究结果,以增强他们的教育经验。此外,还将组织一次有关上述计算技术的研讨会。 将与美国国家标准与技术研究所合作,开发该模拟软件的 Python 脚本版本,并将通过其网站传播,以用于教育和研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Katsuyo Thornton其他文献

Teaching Computational Methods for Materials Discovery and Design
  • DOI:
    10.1007/s11837-023-05923-2
  • 发表时间:
    2023-06-02
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Timothy Chambers;Katsuyo Thornton;Wenhao Sun
  • 通讯作者:
    Wenhao Sun
The origin of the superior fast-charging performance of hybrid graphite/hard carbon anodes for Li-ion batteries
锂离子电池混合石墨/硬碳负极卓越快充性能的起源
  • DOI:
    10.1016/j.ensm.2025.104053
  • 发表时间:
    2025-03-01
  • 期刊:
  • 影响因子:
    20.200
  • 作者:
    Vishwas Goel;Kevin Masel;Kuan-Hung Chen;Ammar Safdari;Neil P. Dasgupta;Katsuyo Thornton
  • 通讯作者:
    Katsuyo Thornton
New frontiers for the materials genome initiative
材料基因组计划的新前沿
  • DOI:
    10.1038/s41524-019-0173-4
  • 发表时间:
    2019-04-05
  • 期刊:
  • 影响因子:
    11.900
  • 作者:
    Juan J. de Pablo;Nicholas E. Jackson;Michael A. Webb;Long-Qing Chen;Joel E. Moore;Dane Morgan;Ryan Jacobs;Tresa Pollock;Darrell G. Schlom;Eric S. Toberer;James Analytis;Ismaila Dabo;Dean M. DeLongchamp;Gregory A. Fiete;Gregory M. Grason;Geoffroy Hautier;Yifei Mo;Krishna Rajan;Evan J. Reed;Efrain Rodriguez;Vladan Stevanovic;Jin Suntivich;Katsuyo Thornton;Ji-Cheng Zhao
  • 通讯作者:
    Ji-Cheng Zhao
Phase-Field Modeling and Simulations of Lipid Membranes Coupling Composition with Membrane Mechanical Properties
  • DOI:
    10.1016/j.bpj.2009.12.1536
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Chloe M. Funkhouser;Francisco J. Solis;Katsuyo Thornton
  • 通讯作者:
    Katsuyo Thornton
Enhancing polycrystalline-microstructure reconstruction from X-ray diffraction microscopy with phase-field post-processing
  • DOI:
    10.1016/j.scriptamat.2024.116228
  • 发表时间:
    2024-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Marcel Chlupsa;Zachary Croft;Katsuyo Thornton;Ashwin J. Shahani
  • 通讯作者:
    Ashwin J. Shahani

Katsuyo Thornton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Katsuyo Thornton', 18)}}的其他基金

Summer School for Integrated Computational Materials Education
综合计算材料教育暑期学校
  • 批准号:
    2213806
  • 财政年份:
    2022
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant
Elements: Data Driven Autonomous Thermodynamic and Kinetic Model Builder for Microstructural Simulations
元素:用于微观结构模拟的数据驱动自主热力学和动力学模型构建器
  • 批准号:
    2209423
  • 财政年份:
    2022
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant
Probing the Evolution of Granular Microstructures during Dynamic Annealing via Integrated Three-Dimensional Experiments and Simulations
通过集成三维实验和模拟探讨动态退火过程中颗粒微观结构的演变
  • 批准号:
    2104786
  • 财政年份:
    2021
  • 资助金额:
    $ 90万
  • 项目类别:
    Continuing Grant
Harnessing Abnormal Grain Growth for the Production of Single Crystals
利用异常晶粒生长来生产单晶
  • 批准号:
    2003719
  • 财政年份:
    2020
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant
GOALI: Collaborative Research: An Experimental and Theoretical Study of the Microstructural and Electrochemical Stability of Solid Oxide Cells
GOALI:协作研究:固体氧化物电池微观结构和电化学稳定性的实验和理论研究
  • 批准号:
    1912151
  • 财政年份:
    2019
  • 资助金额:
    $ 90万
  • 项目类别:
    Continuing Grant
Collaborative Research: Integrated Computational and Experimental Studies of Solid Oxide Fuel Cell Electrode Structural Evolution and Electrochemical Characteristics
合作研究:固体氧化物燃料电池电极结构演化和电化学特性的综合计算和实验研究
  • 批准号:
    1506055
  • 财政年份:
    2015
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant
FRG: Predictive Computational Modeling of Two-Dimensional Materials Beyond Graphene: Defects and Morphologies
FRG:石墨烯以外的二维材料的预测计算模型:缺陷和形态
  • 批准号:
    1507033
  • 财政年份:
    2015
  • 资助金额:
    $ 90万
  • 项目类别:
    Continuing Grant
Collaborative Research: Summer School for Integrated Computational Materials Education
合作研究:综合计算材料教育暑期学校
  • 批准号:
    1410461
  • 财政年份:
    2014
  • 资助金额:
    $ 90万
  • 项目类别:
    Continuing Grant
Summer School for Integrated Computational Materials Education
综合计算材料教育暑期学校
  • 批准号:
    1058314
  • 财政年份:
    2010
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant
Collaborative Research: Three-Dimensional Microstructural and Chemical Mapping of Solid Oxide Fuel Cell Electrodes: Processing, Structure, Stability, and Electrochemistry
合作研究:固体氧化物燃料电池电极的三维微观结构和化学测绘:加工、结构、稳定性和电化学
  • 批准号:
    0907030
  • 财政年份:
    2009
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant

相似国自然基金

水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
  • 批准号:
    32070202
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

Development and validation of a highly novel teleassistance enabled navigational aid for blind persons.
开发和验证了一种高度新颖的远程协助,为盲人提供导航帮助。
  • 批准号:
    10093029
  • 财政年份:
    2024
  • 资助金额:
    $ 90万
  • 项目类别:
    Collaborative R&D
Research Initiation: Development and Initial Validation of an Engineering Empathy Scale
研究启动:工程同理心量表的开发和初步验证
  • 批准号:
    2306271
  • 财政年份:
    2023
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant
Development and Validation of a Combined Risk Prediction Model for Childhood Obesity Using Cord Blood Genomics and Epigenomics
利用脐带血基因组学和表观基因组学开发和验证儿童肥胖联合风险预测模型
  • 批准号:
    23H02880
  • 财政年份:
    2023
  • 资助金额:
    $ 90万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: Research: Development and Validation of Learning through Making Instrument (LMI)
合作研究:研究:通过制造仪器进行学习的开发和验证(LMI)
  • 批准号:
    2138447
  • 财政年份:
    2023
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant
Development and validation of a composite measure of physical function using a battery of performance-based measures: A longitudinal analyses of the Canadian Longitudinal Study on Aging
使用一系列基于表现的测量方法开发和验证身体机能的综合测量方法:加拿大老龄化纵向研究的纵向分析
  • 批准号:
    499193
  • 财政年份:
    2023
  • 资助金额:
    $ 90万
  • 项目类别:
    Operating Grants
Development and validation of a "Pediatric Delirium Diagnostic Scale" using an automated infrared pupillometry
使用自动红外瞳孔测量法开发和验证“儿科谵妄诊断量表”
  • 批准号:
    23K15634
  • 财政年份:
    2023
  • 资助金额:
    $ 90万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development and validation of a Parallel Artificial Membrane Assay Permeation model for personal care formulations
个人护理配方平行人工膜测定渗透模型的开发和验证
  • 批准号:
    2870236
  • 财政年份:
    2023
  • 资助金额:
    $ 90万
  • 项目类别:
    Studentship
Rotation 1: Validation of a putative MYB transcription factor involved in chloroplast development
第 1 轮:验证参与叶绿体发育的推定 MYB 转录因子
  • 批准号:
    2887717
  • 财政年份:
    2023
  • 资助金额:
    $ 90万
  • 项目类别:
    Studentship
Development and validation of a porcine model of spinal cord injury-induced neuropathic pain
脊髓损伤引起的神经性疼痛猪模型的开发和验证
  • 批准号:
    10805071
  • 财政年份:
    2023
  • 资助金额:
    $ 90万
  • 项目类别:
Development and validation of a health promotion application for hereditary tumors
遗传性肿瘤健康促进应用程序的开发和验证
  • 批准号:
    23K10870
  • 财政年份:
    2023
  • 资助金额:
    $ 90万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了