Spin-dependent transport and thermoelectric phenomena in multi-band systems
多带系统中的自旋相关输运和热电现象
基本信息
- 批准号:1105512
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-01 至 2015-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL SUMMARYThe field of spintronics, for both metals and semiconductors, has been a continuous source of intellectual challenges over the past two decades. Within this field one can broadly distinguish two regimes: one where the spin-orbit coupling is weak and acts as a perturbation, and another where the spin-orbit coupling is strong. The latter regime remains one of the most theoretically difficult at a fundamental level. This award supports theoretical and computational research and education to study spin dependent transport and thermoelectric properties in complex multiband systems with strong spin-orbit coupling. The PI will focus on four research thrusts centered on fundamental physics questions that are mostly motivated by unexplained experimental phenomenology:1) Anomalous Hall effects in multiple transport regimes. The PI will study analytically and numerically the origin of the phenomenological scaling of the anomalous Hall effect observed in the insulating regime and how the topological properties of the metallic regime transform as disorder increases.2) Spin dynamics and spin relaxation in the strong spin-orbit coupled regime. The PI will study recent optical experiments demonstrating unique spin dynamics in this regime, explore these dynamics through non-equilibrium transport techniques, and connect them to spin accumulation in this regime and new electrical measurements of the spin Hall effect where spin-orbit coupling can be tuned systematically.3) Topological thermoelectric materials and spin-dependent thermoelectric effects. The PI will explore the thermodynamic properties of topological insulators connected to the one-dimensional protected states in dislocations, as well as other spin thermoelectric transport phenomena in these materials. The primary focus will be to find schemes and arrangements in which thermoelectric efficiency can be tuned above bulk material values that are currently achieved.4) Localization effects in diluted magnetic semiconductors. The PI will study recent experiments that seem to indicate a mixed character of the Fermi surface in these systems, and explore the effects of strong disorder and spin-orbit coupling on optical and transport phenomena near this regime.On the educational and outreach front several graduate students and postdoctoral researchers will be trained in diverse analytical and computational techniques for the modeling of transport, optical and thermoelectric properties. They will work closely with experimental collaborators and have ample opportunities to visit them and experience an international collaboration effort. The training will help the students in any career path they may choose to take, whether it is in academia or industry. In addition, the PI will establish a website which incorporates tutorials on scientific visualization focused on spintronics and based on the open-source code Blender. An open repository of notes and base codes on spin-charge transport will be also developed.NON-TECHNICAL SUMMARYThe field of spintronics is an emerging technology that exploits not only the electronic charge but also the intrinsic spin of the electron in solid-state devices. For both metals and semiconductors, this field has been a continuous source of intellectual challenges over the past two decades. This award supports theoretical and computational research and education to study how electrons are driven through certain materials by external fields, for example the electric field of a battery. The resulting transport property of the material reflects the way electrons move through it which may depend on how their spin, an intrinsic property of the electron, interacts with the material. The PI will study spin dependent transport properties, and electronic properties induced by thermal effects, in complex materials with the interesting property that the interaction of the spin with the material is strong. This is an exciting and intriguing frontier in the field of spintronics. The PI will focus on several research thrusts centered on fundamental physics questions that are motivated by either unexplained experimental phenomenology or new potentially transformative approaches such as the possibility of efficiently obtaining electrical currents from thermal effects (thermoelectricity) that originate from intriguing properties of the so-called "topological insulators", which conduct electricity only on their surfaces or boundaries, rather than their interior. The proposed activities could potentially contribute to the development of new paradigms in thermoelectric efficiency and heat management in devices that are some one millionth size of the human hair. Such materials are of fundamental importance for energy usage efficiency as they could provide heat recovery energy systems that are more efficient than present day coolers and refrigerators. On the educational and outreach front several graduate students and postdoctoral researchers will be trained in diverse analytical and computational techniques for the modeling of transport, optical and thermoelectric properties. They will work closely with experimental collaborators and have ample opportunities to visit them and experience an international collaboration effort. The training will help the students in any career path they may choose to take, whether it is in academia or industry. In addition, the PI will establish a website which incorporates tutorials on scientific visualization focused on spintronics and based on an open-source code. An open repository of notes and base codes on spin-charge transport will be also developed.
在过去的二十年里,金属和半导体的自旋电子学领域一直是智力挑战的持续来源。在这个领域内,人们可以大致区分两个区域:一个是自旋-轨道耦合较弱,并作为微扰,另一个是自旋-轨道耦合较强。后一种制度在基本层面上仍然是理论上最困难的制度之一。该奖项支持理论和计算研究和教育,以研究具有强自旋轨道耦合的复杂多带系统中的自旋相关输运和热电性质。PI将专注于四个研究方向,这些研究方向主要集中在基础物理问题上,这些问题主要是由无法解释的实验现象学引起的:1)多输运机制中的异常霍尔效应。 PI将分析和数值研究在绝缘状态下观察到的反常霍尔效应的唯象标度的起源以及金属状态的拓扑性质如何随着无序的增加而转变。2)强自旋轨道耦合状态下的自旋动力学和自旋弛豫。PI将研究最近的光学实验,证明在这一制度下独特的自旋动力学,通过非平衡传输技术探索这些动力学,并将它们与这一制度下的自旋积累和自旋霍尔效应的新电测量相联系,其中自旋轨道耦合可以系统地调谐。 PI将探索与位错中的一维保护态相连的拓扑绝缘体的热力学性质,以及这些材料中的其他自旋热电输运现象。主要的重点将是找到方案和安排,其中热电效率可以调整以上的散装材料的值,目前被拒绝。4)在稀磁半导体的局域化效应。PI将研究最近的实验,似乎表明在这些系统中的费米面的混合字符,并探讨强无序和自旋轨道耦合对光学和传输现象附近的政权的影响。在教育和推广方面,几个研究生和博士后研究人员将在不同的分析和计算技术的培训,为运输,光学和热电性能的建模。他们将与实验合作者密切合作,并有充分的机会访问他们,体验国际合作的努力。培训将帮助学生在任何职业道路,他们可能会选择采取,无论是在学术界或行业。 此外,PI还将建立一个网站,其中包含以自旋电子学为重点的科学可视化教程,并基于开源代码Blender。自旋电子学领域是一门新兴的技术,它不仅利用了固态器件中的电子电荷,而且利用了电子的固有自旋。对于金属和半导体来说,这一领域在过去二十年中一直是智力挑战的持续来源。 该奖项支持理论和计算研究和教育,以研究电子如何通过外部场(例如电池的电场)驱动通过某些材料。所得到的材料的传输特性反映了电子通过它的方式,这可能取决于它们的自旋(电子的固有特性)如何与材料相互作用。PI将研究自旋相关的输运性质,以及由热效应引起的电子性质,在复杂的材料中具有有趣的性质,即自旋与材料的相互作用很强。这是自旋电子学领域中一个令人兴奋和有趣的前沿。PI将专注于以基础物理问题为中心的几个研究方向,这些问题的动机是无法解释的实验现象学或新的潜在变革方法,例如从热效应中有效获得电流的可能性(热电)源于所谓的“拓扑绝缘体”的有趣特性,这种绝缘体仅在其表面或边界上导电,而不是他们的内部。拟议的活动可能有助于开发热电效率和热管理的新范例,这些设备的尺寸约为人类头发的百万分之一。这种材料对于能量使用效率是至关重要的,因为它们可以提供比当今的冷却器和冰箱更有效的热回收能量系统。在教育和推广方面,一些研究生和博士后研究人员将接受各种分析和计算技术的培训,用于运输,光学和热电特性的建模。他们将与实验合作者密切合作,并有充分的机会访问他们,体验国际合作的努力。培训将帮助学生在任何职业道路,他们可能会选择采取,无论是在学术界或行业。此外,PI还将建立一个网站,其中包含以自旋电子学为重点的科学可视化教程,并以开源代码为基础。还将开发一个关于自旋电荷输运的注释和基本代码的开放式储存库。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Artem Abanov其他文献
Around a theorem of F. Dyson and A. Lenard: Energy equilibria for point charge distributions in classical electrostatics
- DOI:
10.1016/j.exmath.2021.03.003 - 发表时间:
2021-06-01 - 期刊:
- 影响因子:
- 作者:
Artem Abanov;Nathan Hayford;Dima Khavinson;Razvan Teodorescu - 通讯作者:
Razvan Teodorescu
Painting and erasing skyrmions
绘制和擦除斯格明子
- DOI:
10.1038/s41928-018-0078-0 - 发表时间:
2018-05-14 - 期刊:
- 影响因子:40.900
- 作者:
Karin Everschor-Sitte;Jairo Sinova;Artem Abanov - 通讯作者:
Artem Abanov
A free boundary problem associated with the isoperimetric inequality
- DOI:
10.1007/s11854-022-0074-1 - 发表时间:
2019-11-09 - 期刊:
- 影响因子:0.900
- 作者:
Artem Abanov;Catherine Bénéteau;Dmitry Khavinson;Razvan Teodorescu - 通讯作者:
Razvan Teodorescu
Artem Abanov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Artem Abanov', 18)}}的其他基金
Laplacian Growth, stochastisity, and selection
拉普拉斯增长、随机性和选择
- 批准号:
0757992 - 财政年份:2008
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似国自然基金
衰老抑制脊髓损伤修复的CXCL13依赖性CD8+T细胞通讯机制研究
- 批准号:82371585
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
细胞周期蛋白依赖性激酶Cdk1介导卵母细胞第一极体重吸收致三倍体发生的调控机制研究
- 批准号:82371660
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
当归芍药散基于双向调控Ras/cAMP-dependent PKA自噬通路的“酸甘化阴、辛甘化阳”的药性基础
- 批准号:81973497
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
CDK5调节羊驼黑色素生成的作用研究
- 批准号:31201868
- 批准年份:2012
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
蒺藜苜蓿细胞周期蛋白依赖性激酶(cyclin-dependent kinase)对根瘤发育的功能研究
- 批准号:31100871
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
铁磁、半金属-超导异质结中电子输运的理论研究
- 批准号:60971053
- 批准年份:2009
- 资助金额:30.0 万元
- 项目类别:面上项目
Riesz乘积和树上的分枝测度的重分形分析
- 批准号:10826054
- 批准年份:2008
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
CaMK II信号转导通路参与前扣带回皮质调节IBS大鼠的内脏痛觉
- 批准号:30800512
- 批准年份:2008
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
Posphoinositide-dependent kinase-1在肿瘤细胞趋化运动和转移中的作用机制
- 批准号:30772529
- 批准年份:2007
- 资助金额:29.0 万元
- 项目类别:面上项目
相似海外基金
Spin-Dependent Charge Transport through Chiral Assemblies
通过手性组装的自旋相关电荷传输
- 批准号:
2004238 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Spin-dependent electron transport through Si-based magnetic tunnel junctions
通过硅基磁隧道结的自旋相关电子传输
- 批准号:
20H02199 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Subcycle observation of spin-dependent transport under intense mid-infrared electric field transient
强中红外瞬态电场下自旋相关输运的亚循环观察
- 批准号:
20K22478 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Dimensional Crossover and Spin-Dependent Transport by Ultra-Thinning of Topological Insulators
超薄拓扑绝缘体的维度交叉和自旋相关输运
- 批准号:
16H03999 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Spin Dependent Transport in Materials with Multivalley Band Structures
多谷带结构材料中的自旋相关输运
- 批准号:
1503601 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Spin-dependent transport and recombination in organic semiconductors (A10*)
有机半导体中的自旋相关输运和重组 (A10*)
- 批准号:
248104897 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Collaborative Research Centres
Ultrafast spin-dependent and spin Seebeck effect: beyond diffusive spin transport, toward a spin-caloritronic terahertz emitter
超快自旋相关和自旋塞贝克效应:超越扩散自旋输运,走向自旋热电子太赫兹发射器
- 批准号:
257737198 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Priority Programmes
Theoretical Investigation of Spin-Dependent Transport from Adsorbates to Magnetic Substrates
从吸附物到磁性基质的自旋相关输运的理论研究
- 批准号:
245771695 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Research Grants
CAREER: Spin-Dependent Transport at Oxide Interfaces Grown by Molecular Beam Epitaxy
职业:分子束外延生长的氧化物界面上的自旋相关输运
- 批准号:
1255629 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Spin-dependent transport in fully processed silicon solar cells studied by pulsed Multifrequency Electrically Detected Magnetic Resonance below 600 MHz/20 mT and at 263 GHz/9.4 T
通过低于 600 MHz/20 mT 和 263 GHz/9.4 T 的脉冲多频电检测磁共振研究完全加工的硅太阳能电池中的自旋相关输运
- 批准号:
221263527 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Priority Programmes