Sufficient dimension reduction of high-dimensional data through regularized covariance estimation
通过正则化协方差估计对高维数据进行充分降维
基本信息
- 批准号:1105650
- 负责人:
- 金额:$ 19.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-01 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many statistical methods for dimensionality reduction, classification, and prediction, require an estimate of a covariance or precision matrix. In high-dimensional settings, (where the number of variables is larger than the sample size), it is known that classical covariance estimation with the sample covariance performs poorly. This has lead to a wealth of alternative regularized high-dimension covariance estimators, many of which have been proposed in the last decade. These estimators have been analyzed primarily in terms of how they perform when estimating the population covariance or precision matrix directly, rather than how they affect the performance of the statistical methods that require a regularized covariance estimate. A particular class of statistical methods of interest is those that perform sufficient dimension reduction (SDR), a powerful approach to reduce the dimensionality of the predictor in regression problems. Most of the SDR methodology and theory requires the number of variables to be less than the sample size, preventing its application to high-dimensional data. The PI, Co-PI, and their colleagues adapt sufficient dimension reduction methodology to high-dimensional settings via regularized covariance estimation. Specifically, they develop alternative SDR methodology, high-dimensional asymptotic analysis (as both the number of variables and the sample size grow), efficient computational algorithms, and applications to data.Genetics, spectroscopy, climate studies, and remote sensing are a few examples of the many research fields that produce high-dimensional data; these are data with many more measured characteristics than subjects or cases. Many standard statistical methods for prediction, classification, and data reduction are either inapplicable or perform poorly in this setting. In response, statistical methods to extract a subset of the measured characteristics for use in predictive models have been developed; however, these methods operate under the assumption that a relatively small number of measured characteristics are relevant for prediction. The investigators address this deficiency by developing new methods for the reduction of high-dimensional data for use in predictive modeling, which unlike many existing methods, are able to extract relevant predictive information from all of the measured characteristics. In addition, the investigators develop publicly available computer software to implement these new methods, enabling their application by researchers and practitioners in many fields.
许多用于降维、分类和预测的统计方法需要估计协方差或精度矩阵。 在高维设置中(变量数量大于样本大小),众所周知,使用样本协方差的经典协方差估计表现不佳。 这导致了大量替代正则化高维协方差估计器的出现,其中许多是在过去十年中提出的。这些估计量主要是根据它们在直接估计总体协方差或精度矩阵时的表现来分析的,而不是根据它们如何影响需要正则化协方差估计的统计方法的性能来分析的。 令人感兴趣的一类特定统计方法是那些执行足够降维 (SDR) 的方法,这是一种降低回归问题中预测变量维度的强大方法。大多数SDR方法和理论要求变量数量小于样本量,这阻碍了其应用于高维数据。 PI、Co-PI 及其同事通过正则化协方差估计将足够的降维方法应用于高维设置。 具体来说,他们开发了替代 SDR 方法、高维渐近分析(随着变量数量和样本量的增长)、高效的计算算法以及数据应用。遗传学、光谱学、气候研究和遥感是产生高维数据的许多研究领域的几个例子;这些数据比受试者或案例具有更多可测量的特征。 许多用于预测、分类和数据缩减的标准统计方法在这种情况下要么不适用,要么表现不佳。 作为回应,已经开发出统计方法来提取测量特征的子集以用于预测模型;然而,这些方法的运行假设是相对少量的测量特征与预测相关。 研究人员通过开发新方法来减少用于预测建模的高维数据来解决这一缺陷,与许多现有方法不同,该方法能够从所有测量的特征中提取相关的预测信息。 此外,研究人员还开发了公开可用的计算机软件来实施这些新方法,使它们能够被许多领域的研究人员和从业者应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adam Rothman其他文献
Increased Pulmonary Artery to Aorta Diameter Ratio on Chest CT in Patients With Idiopathic Pulmonary Fibrosis is Associated With More Severe Pulmonary Fibrosis, Coronary Calcification, and Physiological and Hemodynamic Abnormalities
- DOI:
10.1016/j.chest.2017.08.482 - 发表时间:
2017-10-01 - 期刊:
- 影响因子:
- 作者:
M. Faisal Siddiqi;Adam Rothman;Jason Filopei;Madeline Ehrlich;Mary Salvatore;Maria Padilla;David Steiger - 通讯作者:
David Steiger
Adam Rothman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adam Rothman', 18)}}的其他基金
CAREER: New methods for multivariate analysis in high dimensions
职业:高维多元分析的新方法
- 批准号:
1452068 - 财政年份:2015
- 资助金额:
$ 19.53万 - 项目类别:
Continuing Grant
相似国自然基金
高维参数和半参数模型下的似然推断
- 批准号:11871263
- 批准年份:2018
- 资助金额:55.0 万元
- 项目类别:面上项目
用于非富勒烯聚合物太阳能电池的苯并三氮唑类二维共轭聚合物
- 批准号:51673200
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
混沌动力系统中的广义熵和维数
- 批准号:10571086
- 批准年份:2005
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Generalization of global topology optimization using dimension reduction technology
使用降维技术的全局拓扑优化的推广
- 批准号:
22K03874 - 财政年份:2022
- 资助金额:
$ 19.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Dimension Reduction and Complex High-Dimensional Data
降维和复杂的高维数据
- 批准号:
RGPIN-2021-04073 - 财政年份:2022
- 资助金额:
$ 19.53万 - 项目类别:
Discovery Grants Program - Individual
Accelerating Bayesian Dimension Reduction for Dynamic Network Data with Many Observations
通过大量观察加速动态网络数据的贝叶斯降维
- 批准号:
2152774 - 财政年份:2022
- 资助金额:
$ 19.53万 - 项目类别:
Standard Grant
Dimension reduction techniques for mixed integer programs
混合整数规划的降维技术
- 批准号:
RGPIN-2021-02475 - 财政年份:2022
- 资助金额:
$ 19.53万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Fine-Grained Statistical Inference in High Dimension: Actionable Information, Bias Reduction, and Optimality
协作研究:高维细粒度统计推断:可操作信息、减少偏差和最优性
- 批准号:
2147546 - 财政年份:2022
- 资助金额:
$ 19.53万 - 项目类别:
Continuing Grant
Dimension Reduction and Data Visualization for Regression Analysis of Metric-Space-Valued Data
用于度量空间值数据回归分析的降维和数据可视化
- 批准号:
2210775 - 财政年份:2022
- 资助金额:
$ 19.53万 - 项目类别:
Standard Grant
Characterize psychological and behavioral dimensions of cardiac arrest survivorship, and their association with 1-year mortality, cardiovascular disease risk, and health-related quality of life
描述心脏骤停幸存者的心理和行为维度及其与 1 年死亡率、心血管疾病风险和健康相关生活质量的关系
- 批准号:
10211850 - 财政年份:2021
- 资助金额:
$ 19.53万 - 项目类别:
Stochastic Shielding for Dimension Reduction in Models of Biological Systems
生物系统模型降维的随机屏蔽
- 批准号:
2052109 - 财政年份:2021
- 资助金额:
$ 19.53万 - 项目类别:
Continuing Grant
Multimodal Integrative Dimension Reduction and Statistical Modeling with Applications to Temporomandibular Joint (TMJ) Morphometry and Biomechanics
多模态综合降维和统计建模及其在颞下颌关节 (TMJ) 形态测量和生物力学中的应用
- 批准号:
10196077 - 财政年份:2021
- 资助金额:
$ 19.53万 - 项目类别:
Multimodal Integrative Dimension Reduction and Statistical Modeling with Applications to Temporomandibular Joint (TMJ) Morphometry and Biomechanics
多模态综合降维和统计建模及其在颞下颌关节 (TMJ) 形态测量和生物力学中的应用
- 批准号:
10366073 - 财政年份:2021
- 资助金额:
$ 19.53万 - 项目类别:














{{item.name}}会员




