Complexity of Problems in Cooperative Game Theory
合作博弈论问题的复杂性
基本信息
- 批准号:201252895
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2011
- 资助国家:德国
- 起止时间:2010-12-31 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The central objective of this prolongation proposal is to make further progress in the theory of hedonic games that has rapidly developed recently and has yielded many highly interesting results, but also some very important open problems. On the one hand, we seek to make a conceptual contribution by introducing the novel concept of 'altruistic' hedonic game and by studying it in detail. Specifically, we will formally model various degrees of altruism in hedonic games, study the properties of the resulting preference relations and stability concepts in altruistic hedonic games (providing, if possible, characterizations), determine the algorithmic efficiency and complexity of the corresponding verification and existence problems, consider restrictions (to special graph classes) and extensions (e.g., normalization) of the model, and investigate problems of strategic influence in altruistic hedonic games. On the other hand, we intend to make a number of technical contributions by solving specific open problems from the literature, in particular regarding 'wonderfully stable partitions' and 'strictly core-stable coalition structures' in hedonic games as well as representing them with ordinal preferences and thresholds. Furthermore, we will keep trying to solve some of the hard questions on manipulating power indices by merging and splitting of players and on bribery in path-disruption games. (Most of the goals from the original proposal have been solved; its scope could be extended by results on hedonic games.)
这个延长建议的中心目标是使享乐游戏理论取得进一步进展,最近迅速发展,并产生了许多非常有趣的结果,但也有一些非常重要的开放问题。一方面,我们试图通过引入“利他主义”享乐博弈的新概念并对其进行详细研究来做出概念上的贡献。具体来说,我们将正式建模不同程度的利他主义在享乐游戏,研究的性质,所产生的偏好关系和稳定性概念在利他享乐游戏(提供,如果可能的话,表征),确定算法的效率和复杂性相应的验证和存在问题,考虑限制(特殊的图类)和扩展(例如,规范化)的模型,并探讨利他享乐博弈中的战略影响问题。另一方面,我们打算通过解决文献中的特定开放问题,特别是关于享乐游戏中的“奇妙稳定分区”和“严格核心稳定联盟结构”以及用序数偏好和阈值表示它们,来做出一些技术贡献。此外,我们将继续努力解决一些困难的问题,如通过合并和分裂玩家来操纵权力指数,以及在路径中断游戏中的贿赂问题。(Most的目标,从原来的建议已经解决;其范围可以扩展的结果享乐游戏。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Borda-induced hedonic games with friends, enemies, and neutral players
博尔达引发的与朋友、敌人和中立玩家的享乐游戏
- DOI:10.1016/j.mathsocsci.2018.08.003
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:J. Rothe;H. Schadrack;L. Schend
- 通讯作者:L. Schend
Path-Disruption Games: Bribery and a Probabilistic Model
路径破坏博弈:贿赂和概率模型
- DOI:10.1007/s00224-016-9669-1
- 发表时间:2017
- 期刊:
- 影响因子:0.5
- 作者:A. Rey;J. Rothe;A. Marple
- 通讯作者:A. Marple
Altruism in Coalition Formation Games
联盟组建博弈中的利他主义
- DOI:10.24963/ijcai.2020/49
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:A. Kerkmann;J. Rothe
- 通讯作者:J. Rothe
Local fairness in hedonic games via individual threshold coalitions
- DOI:10.1016/j.tcs.2021.03.027
- 发表时间:2021-06-01
- 期刊:
- 影响因子:1.1
- 作者:Kerkmann, Anna Maria;Nguyen, Nhan-Tam;Rothe, Joerg
- 通讯作者:Rothe, Joerg
False-Name Manipulation in Weighted Voting Games Is Hard for Probabilistic Polynomial Time
加权投票游戏中的假名操纵对于概率多项式时间来说是困难的
- DOI:10.1613/jair.4293
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:A. Rey;J. Rothe
- 通讯作者:J. Rothe
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Jörg-Matthias Rothe其他文献
Professor Dr. Jörg-Matthias Rothe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Jörg-Matthias Rothe', 18)}}的其他基金
Komplexität von Wahlproblemen: Gewinner-Bestimmung, Manipulation und Wahlkontrolle
选举问题的复杂性:获胜者确定、操纵和选举控制
- 批准号:
50868308 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Grants
Complexity analysis of voting systems, exact and critical problems, and symmetric alternation
投票系统的复杂性分析、精确和关键问题以及对称交替
- 批准号:
5406018 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Research Grants
Complexity of Strategic Behavior in Collective Decision Making
集体决策中战略行为的复杂性
- 批准号:
438204498 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Distributed cooperative state estimation algorithms of nonlinear systems and their application to SLAM problems
非线性系统分布式协作状态估计算法及其在SLAM问题中的应用
- 批准号:
19K04447 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
An empirical study on clarifying the present state of cooperative research between a company and a university in order to examine problems and solutions of activating local innovations
澄清企业与大学合作研究现状的实证研究,探讨激活当地创新的问题和解决方案
- 批准号:
26380647 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Cooperative Routing Problems under a Rolling Horizon Framework
滚动地平线框架下的协作路由问题
- 批准号:
191418526 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Research Grants
Processing developing biases and the results of remarks made during coaching : Possibilities and problems in cooperative coaching
处理发展中的偏见和辅导期间言论的结果:合作辅导的可能性和问题
- 批准号:
21700643 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
Studies on restrictions on coalition formation in cooperative games derived from optimization problems
基于优化问题的合作博弈联盟形成限制研究
- 批准号:
20560384 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
U.S.-India Cooperative Research: Geometric Query-Retrieval Problems on Aggregated Data
美印合作研究:聚合数据的几何查询检索问题
- 批准号:
0422775 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Standard Grant
US-France Cooperative Research: Offline and Online Algorithms for Job Scheduling Problems
美法合作研究:作业调度问题的离线和在线算法
- 批准号:
0340752 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Standard Grant
U.S.-Egypt Cooperative Research: Management of Environmental Problems in Egypt
美国-埃及合作研究:埃及环境问题的管理
- 批准号:
0405900 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Standard Grant
US-France Cooperative Research (INRIA): Approximate Boundary Conditions for Computational Wave Problems
美法合作研究(INRIA):计算波浪问题的近似边界条件
- 批准号:
0307475 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Standard Grant
US-India Cooperative Research: Application of Carbon Nanotubes in Composites - Alignment and Adhesion Problems
美印合作研究:碳纳米管在复合材料中的应用——排列和粘合问题
- 批准号:
0408547 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Standard Grant