Group actions and curvature
群体行动和曲率
基本信息
- 批准号:1112913
- 负责人:
- 金额:$ 28.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-01 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The overall description of the proposal is to study manifolds with positive or more generally non-negative sectional curvature under the assumption of a large isometry group. In past proposals the principal investigator has used this approach to produce many new examples of non-negative curvature, including some on exotic spheres. Recently he also constructed a new example of positive curvature among an infinite family of candidates he discovered in previous proposals, and found an obstruction to one of these candidates as well. The principal investigator plans to study these candidates in more detail in the hope of finding more examples of positive curvature. The new obstruction is quite general and needs to be explored in more detail for actions with large isometry group, for example polar actions. Its implications without the presence of an isometric group action will be explored as well. There are many questions of a more general nature within this subject of ``non-negative sectional curvature with large isometry groups" that the principal investigator plans to study. Finally, as was done in past proposals with success, studying topological properties of new and known examples can be very difficult but also very rewarding.Manifolds with positive sectional curvature can be defined by the property that the sum of the 3 angles in any triangle is larger than 180 degrees, i.e. their geometry is similar to that of the round sphere. Global Riemannian geometry can be described as relating local stretching and bending to the global shape of space. Since the beginning of global Riemannian geometry, manifolds with positive or more generally non-negative curvature have been an important part of this subject. Nevertheless one still has few obstructions to the existence of such geometries, especially if one wants to distinguish between those manifolds that admit non-negative sectional curvature and those that admit positive sectional curvature. Unfortunately one also has few examples with non-negative curvature and even rarer are examples with positive curvature. It is thus of paramount importance to construct new examples, one of goals of this proposal.
该建议的总体描述是在大等距群的假设下研究具有正或更一般的非负截面曲率的流形。在过去的提案中,首席研究员已经使用这种方法产生了许多非负曲率的新例子,包括一些在奇异球体上的例子。最近,他还在他在先前的建议中发现的无限候选者中构造了一个新的正曲率例子,并发现了其中一个候选者的障碍。首席研究员计划更详细地研究这些候选者,希望找到更多正曲率的例子。新的障碍是相当普遍的,需要更详细地探索具有大等距群的作用,例如极性作用。在不存在等距群作用的情况下,也将探讨其含义。在首席研究员计划研究的“具有大等距群的非负截面曲率”这一主题中,有许多更一般性质的问题。最后,正如在过去的成功建议中所做的那样,研究新的和已知示例的拓扑性质可能非常困难,但也非常有益。具有正截面曲率的流形可以定义为任意三角形的3个角之和大于180度,即其几何形状类似于圆球。整体黎曼几何可以被描述为将局部拉伸和弯曲与空间的整体形状联系起来。自整体黎曼几何开始以来,具有正曲率或更一般的非负曲率的流形一直是该学科的重要组成部分。然而,对于这种几何的存在,人们仍然有一些障碍,特别是当人们想要区分那些承认非负截面曲率的流形和那些承认正截面曲率的流形时。不幸的是,很少有非负曲率的例子,而正曲率的例子就更少了。因此,构建新的例子是至关重要的,这也是本建议的目标之一。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wolfgang Ziller其他文献
Closed geodesics on homogeneous spaces
- DOI:
10.1007/bf01214223 - 发表时间:
1976-02-01 - 期刊:
- 影响因子:1.000
- 作者:
Wolfgang Ziller - 通讯作者:
Wolfgang Ziller
Curvature homogeneous hypersurfaces in space forms
空间形式中的曲率齐次超曲面
- DOI:
10.1016/j.aim.2025.110338 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:1.500
- 作者:
Robert Bryant;Luis Florit;Wolfgang Ziller - 通讯作者:
Wolfgang Ziller
Palais–Smale sequences for the prescribed Ricci curvature functional
- DOI:
10.1007/s00526-024-02776-8 - 发表时间:
2024-07-04 - 期刊:
- 影响因子:2.000
- 作者:
Artem Pulemotov;Wolfgang Ziller - 通讯作者:
Wolfgang Ziller
Fibrations of spheres by parallel great spheres and Berger's rigidity theorem
- DOI:
10.1007/bf00140754 - 发表时间:
1987-01-01 - 期刊:
- 影响因子:0.700
- 作者:
Herman Gluck;Frank Warner;Wolfgang Ziller - 通讯作者:
Wolfgang Ziller
Orbifold fibrations of Eschenburg spaces
- DOI:
10.1007/s10711-007-9174-4 - 发表时间:
2007-08-03 - 期刊:
- 影响因子:0.500
- 作者:
Luis A. Florit;Wolfgang Ziller - 通讯作者:
Wolfgang Ziller
Wolfgang Ziller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wolfgang Ziller', 18)}}的其他基金
Curvature, group actions and geometric flows
曲率、群作用和几何流
- 批准号:
1506148 - 财政年份:2015
- 资助金额:
$ 28.7万 - 项目类别:
Standard Grant
International Symposium on Differential Geometry, August 2009, Rio de Janeiro, Brazil
微分几何国际研讨会,2009 年 8 月,巴西里约热内卢
- 批准号:
0907300 - 财政年份:2009
- 资助金额:
$ 28.7万 - 项目类别:
Standard Grant
XV Brazilian School of Differential Geometry, July 2008, Fortaleza, Brazil
第十五届巴西微分几何学院,2008 年 7 月,巴西福塔雷萨
- 批准号:
0813597 - 财政年份:2008
- 资助金额:
$ 28.7万 - 项目类别:
Standard Grant
Non-negative curvature and group actions
非负曲率和群作用
- 批准号:
0806070 - 财政年份:2008
- 资助金额:
$ 28.7万 - 项目类别:
Continuing Grant
Manifolds with Non-negative Curvature
具有非负曲率的流形
- 批准号:
0504202 - 财政年份:2005
- 资助金额:
$ 28.7万 - 项目类别:
Continuing Grant
Manifolds with Positive Sectional Curvature Almost Everywhere
几乎到处都有正截面曲率的流形
- 批准号:
0104086 - 财政年份:2001
- 资助金额:
$ 28.7万 - 项目类别:
Standard Grant
相似国自然基金
骨骼肌中胰高血糖素受体的表达及其调控血糖稳态的作用与机制研究
- 批准号:82370820
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
相似海外基金
Research of submanifolds by using the mean curvature flow and Lie group actions, and its application to theoretical physics
利用平均曲率流和李群作用研究子流形及其在理论物理中的应用
- 批准号:
22K03300 - 财政年份:2022
- 资助金额:
$ 28.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Curvature, group actions and geometric flows
曲率、群作用和几何流
- 批准号:
1506148 - 财政年份:2015
- 资助金额:
$ 28.7万 - 项目类别:
Standard Grant
Group actions on symplectic manifolds and their quantization
辛流形上的群作用及其量子化
- 批准号:
23540072 - 财政年份:2011
- 资助金额:
$ 28.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Extremality of symmetry in nonpositive curvature, geodesics, and the dynamics of large group actions.
非正曲率、测地线和大群行为动力学中的对称性极值。
- 批准号:
1013334 - 财政年份:2009
- 资助金额:
$ 28.7万 - 项目类别:
Standard Grant
Research on spaces of non-positive curvature with group actions and Coxeter groups
具有群作用和Coxeter群的非正曲率空间研究
- 批准号:
21740037 - 财政年份:2009
- 资助金额:
$ 28.7万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Extremality of symmetry in nonpositive curvature, geodesics, and the dynamics of large group actions.
非正曲率、测地线和大群行为动力学中的对称性极值。
- 批准号:
0905906 - 财政年份:2009
- 资助金额:
$ 28.7万 - 项目类别:
Standard Grant
Non-negative curvature and group actions
非负曲率和群作用
- 批准号:
0806070 - 财政年份:2008
- 资助金额:
$ 28.7万 - 项目类别:
Continuing Grant
Group Actions on Manifolds with Positive Sectional Curvature
正截面曲率流形上的群作用
- 批准号:
0336681 - 财政年份:2002
- 资助金额:
$ 28.7万 - 项目类别:
Standard Grant
Group Actions on Manifolds with Positive Sectional Curvature
正截面曲率流形上的群作用
- 批准号:
0103993 - 财政年份:2001
- 资助金额:
$ 28.7万 - 项目类别:
Standard Grant