Non-negative curvature and group actions
非负曲率和群作用
基本信息
- 批准号:0806070
- 负责人:
- 金额:$ 38.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract-DMS-0806070The overall description of the proposal is to study manifolds with positive or more generally nonnegative sectional curvature under the assumption of a large isometry group. In past proposals the principal investigator has used this approach to produce many new examples of nonnegative curvature, including some on exotic spheres. The present proposal studies a specific class of manifolds that admit an isometric group action with one dimensional quotient and which he considers to be excellent candidates for new examples with positive curvature. These candidates were obtained in a previous proposal as part of a classification theorem. The principal investigator plans to study a concrete class of metrics on these manifolds and has obtained considerable expertise in their curvature properties already. This project is extremely difficult and is expected to require a long term time investment.There are many questions of a more general nature within this subject of ``\nnc\ with large isometry groups" that the principal investigator plans to study, and which promise a much quicker return. Finally, as was done in past proposals with success, studying topological properties of new and known examples can be very difficult but also very rewarding.Manifolds with positive sectional curvaturecan be defined by the property that the sum of the 3 angles in any triangle is larger than 180 degrees, i.e.their geometry is similar to that of the round sphere. Global Riemannian geometry can be described as relating local invariants like curvature to global topological invariants. Since the beginning of global Riemannian geometry, manifolds with positive or more generally non-negative curvature have been an important part of this subject. A basic unsolved question is whether exotic spheres, i.e. manifolds that look like spheres but on which ordinary calculus is quite different, can carry positively curved metrics. Symmetries are an important aspect of many geometric questions and the principal investigator plans to study manifolds with positive or more generally non-negative curvature under the presence of a large symmetry group. One of the goals of this investigation is the search for new examples.
摘要-DMS-0806070该提案的总体描述是在一个大等距群的假设下研究具有正截面曲率或更一般的非负截面曲率的流形。在过去的提案中,主要研究者已经使用这种方法产生了许多新的非负曲率的例子,包括一些奇异的球体。本建议研究了一类特定的流形,承认等距群行动与一维商,他认为是优秀的候选人新的例子,正曲率。这些候选人在以前的提案中获得的分类定理的一部分。首席研究员计划研究这些流形上的一类具体度量,并在其曲率性质方面已经获得了相当多的专业知识。这个项目是非常困难的,预计将需要长期的时间投资。有很多问题的一个更普遍的性质在这个主题的``\nnc\与大型等距群”,主要研究者计划研究,并承诺更快的回报。最后,正如过去成功的建议所做的那样,研究新的和已知的例子的拓扑性质是非常困难的,但也是非常有益的。具有正截面曲率的流形可以定义为任何三角形中的3个角之和大于180度的性质,即它们的几何形状类似于圆球的几何形状。整体黎曼几何可以描述为将局部不变量(如曲率)与整体拓扑不变量相关联。自整体黎曼几何开始以来,具有正曲率或更一般的非负曲率的流形一直是这门学科的重要组成部分。一个基本的未解决的问题是奇异球,即看起来像球但普通微积分完全不同的流形,是否可以携带正弯曲的度量。对称性是许多几何问题的一个重要方面,首席研究员计划研究在大对称群存在下具有正曲率或更一般的非负曲率的流形。这次调查的目的之一是寻找新的例子。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wolfgang Ziller其他文献
Closed geodesics on homogeneous spaces
- DOI:
10.1007/bf01214223 - 发表时间:
1976-02-01 - 期刊:
- 影响因子:1.000
- 作者:
Wolfgang Ziller - 通讯作者:
Wolfgang Ziller
Curvature homogeneous hypersurfaces in space forms
空间形式中的曲率齐次超曲面
- DOI:
10.1016/j.aim.2025.110338 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:1.500
- 作者:
Robert Bryant;Luis Florit;Wolfgang Ziller - 通讯作者:
Wolfgang Ziller
Palais–Smale sequences for the prescribed Ricci curvature functional
- DOI:
10.1007/s00526-024-02776-8 - 发表时间:
2024-07-04 - 期刊:
- 影响因子:2.000
- 作者:
Artem Pulemotov;Wolfgang Ziller - 通讯作者:
Wolfgang Ziller
Orbifold fibrations of Eschenburg spaces
- DOI:
10.1007/s10711-007-9174-4 - 发表时间:
2007-08-03 - 期刊:
- 影响因子:0.500
- 作者:
Luis A. Florit;Wolfgang Ziller - 通讯作者:
Wolfgang Ziller
Topological properties of Eschenburg spaces and 3-Sasakian manifolds
- DOI:
10.1007/s00208-007-0102-6 - 发表时间:
2007-04-19 - 期刊:
- 影响因子:1.400
- 作者:
Ted Chinburg;Christine Escher;Wolfgang Ziller - 通讯作者:
Wolfgang Ziller
Wolfgang Ziller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wolfgang Ziller', 18)}}的其他基金
Curvature, group actions and geometric flows
曲率、群作用和几何流
- 批准号:
1506148 - 财政年份:2015
- 资助金额:
$ 38.97万 - 项目类别:
Standard Grant
International Symposium on Differential Geometry, August 2009, Rio de Janeiro, Brazil
微分几何国际研讨会,2009 年 8 月,巴西里约热内卢
- 批准号:
0907300 - 财政年份:2009
- 资助金额:
$ 38.97万 - 项目类别:
Standard Grant
XV Brazilian School of Differential Geometry, July 2008, Fortaleza, Brazil
第十五届巴西微分几何学院,2008 年 7 月,巴西福塔雷萨
- 批准号:
0813597 - 财政年份:2008
- 资助金额:
$ 38.97万 - 项目类别:
Standard Grant
Manifolds with Non-negative Curvature
具有非负曲率的流形
- 批准号:
0504202 - 财政年份:2005
- 资助金额:
$ 38.97万 - 项目类别:
Continuing Grant
Manifolds with Positive Sectional Curvature Almost Everywhere
几乎到处都有正截面曲率的流形
- 批准号:
0104086 - 财政年份:2001
- 资助金额:
$ 38.97万 - 项目类别:
Standard Grant
相似国自然基金
5'-tRF-GlyGCC通过SRSF1调控RNA可变剪切促三阴性乳腺癌作用机制及干预策略
- 批准号:82372743
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
染色体结构维持蛋白1在端粒DNA双链断裂损伤修复中的作用及其机理
- 批准号:31801145
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于个体分析的投影式非线性非负张量分解在高维非结构化数据模式分析中的研究
- 批准号:61502059
- 批准年份:2015
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
PKCzeta-抑制肽对缺血性损伤的神经保护作用及其机制
- 批准号:30870794
- 批准年份:2008
- 资助金额:35.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Large scale geometry and negative curvature
职业:大规模几何和负曲率
- 批准号:
2340341 - 财政年份:2024
- 资助金额:
$ 38.97万 - 项目类别:
Continuing Grant
MicroRNA-375 regulation of enteroendocrine cell biology in diet-induced obesity and bariatric surgery
MicroRNA-375对饮食诱导肥胖和减肥手术中肠内分泌细胞生物学的调节
- 批准号:
10377349 - 财政年份:2021
- 资助金额:
$ 38.97万 - 项目类别:
MicroRNA-375 regulation of enteroendocrine cell biology in diet-induced obesity and bariatric surgery
MicroRNA-375对饮食诱导肥胖和减肥手术中肠内分泌细胞生物学的调节
- 批准号:
10627745 - 财政年份:2021
- 资助金额:
$ 38.97万 - 项目类别:
Surface group representations and geometry of negative curvature
负曲率的曲面组表示和几何
- 批准号:
20K03610 - 财政年份:2020
- 资助金额:
$ 38.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Challenges in Negative and Nonpositive Curvature
负曲率和非正曲率的挑战
- 批准号:
1906538 - 财政年份:2019
- 资助金额:
$ 38.97万 - 项目类别:
Continuing Grant
Conference on Aspects of Non-Positive and Negative Curvature in Group Theory
群论中非正曲率和负曲率方面的会议
- 批准号:
1856388 - 财政年份:2019
- 资助金额:
$ 38.97万 - 项目类别:
Standard Grant
Trees, cubical complexes, and generalisations of coarse negative curvature in group theory
群论中的树、立方复形和粗负曲率的推广
- 批准号:
2123260 - 财政年份:2018
- 资助金额:
$ 38.97万 - 项目类别:
Studentship
Negative Curvature in Fiber Bundles and Counting Problems
纤维束的负曲率和计数问题
- 批准号:
1708279 - 财政年份:2017
- 资助金额:
$ 38.97万 - 项目类别:
Standard Grant
Negative Curvature in Fiber Bundles and Counting Problems
纤维束的负曲率和计数问题
- 批准号:
1744551 - 财政年份:2017
- 资助金额:
$ 38.97万 - 项目类别:
Standard Grant
EAPSI: Surface Subgroups in Gromov-Thurston Manifolds and Brownian Motion in Riemannian Manifolds of Negative Curvature
EAPSI:格罗莫夫-瑟斯顿流形中的表面子群和负曲率黎曼流形中的布朗运动
- 批准号:
1614366 - 财政年份:2016
- 资助金额:
$ 38.97万 - 项目类别:
Fellowship Award