Eigenvalues problems, Krylov subspace methods, and subspace recycling
特征值问题、Krylov 子空间方法和子空间回收
基本信息
- 批准号:1115520
- 负责人:
- 金额:$ 28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-15 至 2014-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project concerns the development, analysis, refinement and testing of efficient numerical algorithms for the solution of algebraic eigenvalue problems and of systems of linear equations arising from a variety of applications. The PI's research is concentrated on the following two classes of problems: 1. Interior eigenvalues of generalized non-Hermitian eigenvalue problems. These arise in many scientific and engineering applications, such as stability analysis of steady flows of incompressible fluid and evaluation of passivity in control systems and circuit networks. 2. Sequences of linear systems of equations. These arise, e.g., in iterative methods for nonlinear problems, such as inexact Newton's method for Riccati equations, inexact eigenvalue algorithms, and interior-point methods for convex optimization. A goal of the project is the development of rapidly convergent and robust Krylov subspace methods to efficiently solve both classes of problems. For the first class of problems, this entails the study of convergence properties, subspace expansion and extraction, and preconditioning techniques that take advantage of the structure of the problems. For the second problem class, the aim is to reduce the iteration counts and computational effort needed for the solution of each linear system by using a properly recycled subspace obtained from the iterative solution of a preceding linear system in the sequence. The study of both problem classes also entails extensive computational experimentation on benchmark problems.The problems to be studied in this project include the efficient computation of a group of eigenvalues and the solution of sequences of linear systems. Eigenvalue calculations include analysis of vibration frequencies in structures including buildings, to make sure, for example, that they are far from the earthquake band. Fast algorithms for generalized eigenvalue problems also contribute to the design and analysis of electronic integrated circuit and micro-electro-mechanical systems (MEMS), and the detection of potential presence of turbulent fluid flows. Efficient solution of a sequence of linear systems facilitates modeling of fatigue and fracture via finite element analysis, and the stability analysis of linear systems through the solution of Riccati equations. The two problems mentioned are fundamental in the field of numerical linear algebra as well as many relevant areas such as fluid and solid mechanics, system and control theory, and numerical optimization. Although numerical algorithms have been developed and studied for some of these problems, efficient solution of large-scale applications remains a major computational challenge. Development and refinement of these computational methods have potential broader impact in engineering and science.
该项目涉及开发、分析、改进和测试有效的数值算法,用于解决代数特征值问题和各种应用产生的线性方程组。PI的研究主要集中在以下两类问题上:1。广义非厄密特征值问题的内特征值。它们出现在许多科学和工程应用中,例如不可压缩流体稳定流动的稳定性分析以及控制系统和电路网络的无源性评估。2. 线性方程组的序列。例如,这些出现在非线性问题的迭代方法中,例如求解Riccati方程的不精确牛顿法,不精确特征值算法和求解凸优化的内点法。该项目的目标是开发快速收敛和鲁棒的Krylov子空间方法来有效地解决这两类问题。对于第一类问题,这需要研究收敛性质,子空间展开和提取,以及利用问题结构的预处理技术。对于第二类问题,目标是通过使用从序列中前一个线性系统的迭代解获得的适当循环子空间来减少每个线性系统解所需的迭代次数和计算量。这两类问题的研究还需要在基准问题上进行广泛的计算实验。本课题研究的问题包括一组特征值的有效计算和线性系统序列的解。特征值计算包括对建筑物等结构的振动频率进行分析,以确保它们远离地震带。广义特征值问题的快速算法也有助于电子集成电路和微机电系统(MEMS)的设计和分析,以及检测潜在存在的湍流流体流动。线性系统序列的有效求解便于通过有限元分析进行疲劳和断裂建模,并通过求解Riccati方程进行线性系统的稳定性分析。这两个问题是数值线性代数领域的基础问题,也是流体与固体力学、系统与控制理论、数值优化等许多相关领域的基础问题。虽然数值算法已经发展和研究了其中一些问题,但大规模应用的有效解决仍然是一个主要的计算挑战。这些计算方法的发展和改进在工程和科学领域具有潜在的更广泛的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Szyld其他文献
Daniel Szyld的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Szyld', 18)}}的其他基金
Multiple preconditioners for saddle-point and other problems
针对鞍点和其他问题的多个预处理器
- 批准号:
1418882 - 财政年份:2014
- 资助金额:
$ 28万 - 项目类别:
Continuing Grant
Graduate Student Support for the 2010 Gene Golub Summer School in Italy
2010 年意大利 Gene Golub 暑期学校研究生支持
- 批准号:
1004223 - 财政年份:2010
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Student and early career support for ISSNLA, July 20-25, 2008, Castro Urdiales, Spain
ISSNLA 的学生和早期职业支持,2008 年 7 月 20 日至 25 日,西班牙卡斯特罗乌迪亚莱斯
- 批准号:
0802444 - 财政年份:2008
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Asynchronous Parallel Methods with Overlapfor Google Matrices, Dynamics of Biomolecules,and Other Markov Chains Problems
谷歌矩阵、生物分子动力学和其他马尔可夫链问题的重叠异步并行方法
- 批准号:
0514489 - 财政年份:2005
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Flexible Krylov Methods and Schwarz Preconditioners
灵活的 Krylov 方法和 Schwarz 预处理器
- 批准号:
0207525 - 财政年份:2002
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Conference on Computational Linear Algebra with Application
计算线性代数及其应用会议
- 批准号:
0137841 - 财政年份:2002
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Computational and Applied Linear Algebra: Asynchronous Parallel Methods, Multiplicative Schwarz and Other Problems
计算和应用线性代数:异步并行方法、乘法施瓦茨和其他问题
- 批准号:
9973219 - 财政年份:1999
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
U.S. Spain Cooperative Research: Parallel Solutions of Linear Systems
美西合作研究:线性系统的并行解
- 批准号:
9521226 - 财政年份:1996
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
U.S.-Czech Mathematics Workshop on Iterative Methods and Parallel Computations
美国-捷克数学迭代方法和并行计算研讨会
- 批准号:
9603052 - 财政年份:1996
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Mathematical Sciences: Blocks, Partitions, Asynchronous Parallel Methods, and Applications to Markov Chains and Other Problems
数学科学:块、分区、异步并行方法以及在马尔可夫链和其他问题中的应用
- 批准号:
9625865 - 财政年份:1996
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
相似国自然基金
复杂图像处理中的自由非连续问题及其水平集方法研究
- 批准号:60872130
- 批准年份:2008
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
CRII: AF: Streaming Approximability of Maximum Directed Cut and other Constraint Satisfaction Problems
CRII:AF:最大定向切割和其他约束满足问题的流近似性
- 批准号:
2348475 - 财政年份:2024
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
AF: Small: Problems in Algorithmic Game Theory for Online Markets
AF:小:在线市场的算法博弈论问题
- 批准号:
2332922 - 财政年份:2024
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Understanding the role of trauma in alcohol and other drug-related problems
了解创伤在酒精和其他毒品相关问题中的作用
- 批准号:
DP240101473 - 财政年份:2024
- 资助金额:
$ 28万 - 项目类别:
Discovery Projects
Organic Bionics: Soft Materials to Solve Hard Problems in Neuroengineering
有机仿生学:解决神经工程难题的软材料
- 批准号:
FT230100154 - 财政年份:2024
- 资助金额:
$ 28万 - 项目类别:
ARC Future Fellowships
Duration models related problems in econometrics
计量经济学中的持续时间模型相关问题
- 批准号:
23K25504 - 财政年份:2024
- 资助金额:
$ 28万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
- 批准号:
2350129 - 财政年份:2024
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
SHF: Small: Taming Huge Page Problems for Memory Bulk Operations Using a Hardware/Software Co-Design Approach
SHF:小:使用硬件/软件协同设计方法解决内存批量操作的大页面问题
- 批准号:
2400014 - 财政年份:2024
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
REU Site: Applied Mathematics in Real World Problems
REU 网站:现实世界问题中的应用数学
- 批准号:
2349382 - 财政年份:2024
- 资助金额:
$ 28万 - 项目类别:
Continuing Grant