CIF: Small: Recursive Robust Principal Components' Analyis (PCA)

CIF:小型:递归稳健主成分分析 (PCA)

基本信息

  • 批准号:
    1117125
  • 负责人:
  • 金额:
    $ 39.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

We develop novel and provably stable polynomial time solutions for solving the recursive robust principal component analysis (PCA) problem. Here, "robust" refers to robustness to both independent and correlated sparse outliers. The goal of PCA is to find the principal component (PC) space, which is the minimum-dimension subspace that spans (or, in practice, approximately spans) a given dataset. Computing the PCs in the presence of outliers is called robust PCA. If the PC space changes over time, there is a need to update the PCs. Doing this recursively is referred to as recursive robust PCA. Key potential applications include automatic foreground extraction from similar-looking backgrounds in video; sensor-network-based detection and tracking of abnormal events such as forest fires; online detection of brain activation patterns from functional MRI sequences; and speech/audio extraction from large but correlated background noise.The key idea is to reformulate this as a problem of recursively recovering a time sequence of sparse signals in the presence of large but correlated noise. The noise must be correlated enough to have an approximately low rank covariance matrix that is either constant or changes slowly. The change in the support of the sparse signal sequences may or may not be slow, but it is highly correlated; e.g. the support can move, expand or deform over time. We ask the following practically relevant questions about performance guarantees of the proposed algorithms. (a) Under what conditions can we prove exact recovery? (b) When can be obtain time-invariant and small error bounds (i.e., show stability)? The research will be included in the curriculum at various levels and in undergraduate senior design and summer research projects.
我们开发了新的和可证明稳定的多项式时间解决方案的递归鲁棒主成分分析(PCA)问题。这里,“鲁棒”是指对独立和相关稀疏离群值的鲁棒性。PCA的目标是找到主成分(PC)空间,它是跨越(或实际上近似跨越)给定数据集的最小维子空间。在存在离群值的情况下计算PC被称为鲁棒PCA。如果PC空间随着时间的推移而发生变化,则需要更新PC。递归地这样做被称为递归鲁棒PCA。主要的潜在应用包括从视频中相似背景中自动提取前景;基于传感器网络的异常事件(如森林火灾)的检测和跟踪;从功能性MRI序列中在线检测大脑激活模式;演讲/从大但相关的背景噪声中提取音频。关键思想是将其重新表述为递归恢复稀疏信号的时间序列的问题,巨大但相关的噪音噪声必须足够相关,以具有近似低秩的协方差矩阵,该协方差矩阵要么是恒定的,要么是缓慢变化的。稀疏信号序列的支持的变化可以是或可以不是缓慢的,但是它是高度相关的;例如,支持可以随时间移动、扩展或变形。我们提出以下与所提出的算法的性能保证相关的实际问题。(a)在什么情况下我们可以证明确切的恢复?(b)当可以获得时不变的和小的误差界限(即,显示稳定性)?该研究将被纳入各级课程和本科高级设计和夏季研究项目。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Namrata Vaswani其他文献

Robust PCA With Partial Subspace Knowledge
具有部分子空间知识的鲁棒PCA
The Wiener-Khinchin Theorem for Non-wide Sense stationary Random Processes
非广义平稳随机过程的 Wiener-Khinchin 定理
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wei Lu;Namrata Vaswani
  • 通讯作者:
    Namrata Vaswani
A linear classifier for Gaussian class conditional distributions with unequal covariance matrices
具有不等协方差矩阵的高斯类条件分布的线性分类器
Provable Low Rank Phase Retrieval and Compressive PCA
可证明的低秩相位检索和压缩 PCA
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Seyedehsara Nayer;Praneeth Narayanamurthy;Namrata Vaswani
  • 通讯作者:
    Namrata Vaswani
A PARTICLE FILTER FOR TRACKING ADAPTIVE NEURAL RESPONSES IN AUDITORY CORTEX
用于跟踪听觉皮层自适应神经反应的粒子滤波器
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Jain;Mounya Elhilali;Namrata Vaswani;J. Fritz;S. Shamma
  • 通讯作者:
    S. Shamma

Namrata Vaswani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Namrata Vaswani', 18)}}的其他基金

CIF: Small: Efficient and Secure Federated Structure Learning from Bad Data
CIF:小型:高效、安全的联邦结构从不良数据中学习
  • 批准号:
    2341359
  • 财政年份:
    2024
  • 资助金额:
    $ 39.67万
  • 项目类别:
    Standard Grant
CIF: Small: Secure and Fast Federated Low-Rank Recovery from Few Column-wise Linear, or Quadratic, Projections
CIF:小型:通过少量列线性或二次投影进行安全快速的联合低秩恢复
  • 批准号:
    2115200
  • 财政年份:
    2021
  • 资助金额:
    $ 39.67万
  • 项目类别:
    Standard Grant
CIF: Small: Structured High-dimensional Data Recovery from Phaseless Measurements
CIF:小型:从无相测量中恢复结构化高维数据
  • 批准号:
    1815101
  • 财政年份:
    2018
  • 资助金额:
    $ 39.67万
  • 项目类别:
    Standard Grant
Distributed Recursive Robust Estimation: Theory, Algorithms and Applications in Single and Multi-Camera Computer Vision
分布式递归鲁棒估计:单相机和多相机计算机视觉中的理论、算法和应用
  • 批准号:
    1509372
  • 财政年份:
    2015
  • 资助金额:
    $ 39.67万
  • 项目类别:
    Standard Grant
CIF: Small: Online Algorithms for Streaming Structured Big-Data Mining
CIF:小型:流式结构化大数据挖掘在线算法
  • 批准号:
    1526870
  • 财政年份:
    2015
  • 资助金额:
    $ 39.67万
  • 项目类别:
    Standard Grant
RI: Small: Exploiting Correlated Sparsity Pattern Change in Dynamic Vision Problems
RI:小:利用动态视觉问题中的相关稀疏模式变化
  • 批准号:
    1117509
  • 财政年份:
    2011
  • 资助金额:
    $ 39.67万
  • 项目类别:
    Standard Grant
CCF (CIF): Small: Recursive Reconstruction of Sparse Signal Sequences
CCF (CIF):小:稀疏信号序列的递归重建
  • 批准号:
    0917015
  • 财政年份:
    2009
  • 资助金额:
    $ 39.67万
  • 项目类别:
    Standard Grant
Change Detection in Nonlinear Systems and Applications in Shape Analysis
非线性系统中的变化检测及其在形状分析中的应用
  • 批准号:
    0725849
  • 财政年份:
    2007
  • 资助金额:
    $ 39.67万
  • 项目类别:
    Standard Grant

相似国自然基金

昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
  • 批准号:
    32000033
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
  • 批准号:
    31972324
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
  • 批准号:
    81900988
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
  • 批准号:
    31870821
  • 批准年份:
    2018
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
  • 批准号:
    31802058
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
  • 批准号:
    31772128
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
  • 批准号:
    81704176
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
  • 批准号:
    91640114
  • 批准年份:
    2016
  • 资助金额:
    85.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

Powering Small Craft with a Novel Ammonia Engine
用新型氨发动机为小型船只提供动力
  • 批准号:
    10099896
  • 财政年份:
    2024
  • 资助金额:
    $ 39.67万
  • 项目类别:
    Collaborative R&D
"Small performances": investigating the typographic punches of John Baskerville (1707-75) through heritage science and practice-based research
“小型表演”:通过遗产科学和基于实践的研究调查约翰·巴斯克维尔(1707-75)的印刷拳头
  • 批准号:
    AH/X011747/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.67万
  • 项目类别:
    Research Grant
Fragment to small molecule hit discovery targeting Mycobacterium tuberculosis FtsZ
针对结核分枝杆菌 FtsZ 的小分子片段发现
  • 批准号:
    MR/Z503757/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.67万
  • 项目类别:
    Research Grant
Bacteriophage control of host cell DNA transactions by small ORF proteins
噬菌体通过小 ORF 蛋白控制宿主细胞 DNA 交易
  • 批准号:
    BB/Y004426/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.67万
  • 项目类别:
    Research Grant
Windows for the Small-Sized Telescope (SST) Cameras of the Cherenkov Telescope Array (CTA)
切伦科夫望远镜阵列 (CTA) 小型望远镜 (SST) 相机的窗口
  • 批准号:
    ST/Z000017/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.67万
  • 项目类别:
    Research Grant
CSR: Small: Leveraging Physical Side-Channels for Good
CSR:小:利用物理侧通道做好事
  • 批准号:
    2312089
  • 财政年份:
    2024
  • 资助金额:
    $ 39.67万
  • 项目类别:
    Standard Grant
CSR: Small: Multi-FPGA System for Real-time Fraud Detection with Large-scale Dynamic Graphs
CSR:小型:利用大规模动态图进行实时欺诈检测的多 FPGA 系统
  • 批准号:
    2317251
  • 财政年份:
    2024
  • 资助金额:
    $ 39.67万
  • 项目类别:
    Standard Grant
AF: Small: Problems in Algorithmic Game Theory for Online Markets
AF:小:在线市场的算法博弈论问题
  • 批准号:
    2332922
  • 财政年份:
    2024
  • 资助金额:
    $ 39.67万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
  • 批准号:
    2329908
  • 财政年份:
    2024
  • 资助金额:
    $ 39.67万
  • 项目类别:
    Standard Grant
NeTS: Small: ML-Driven Online Traffic Analysis at Multi-Terabit Line Rates
NeTS:小型:ML 驱动的多太比特线路速率在线流量分析
  • 批准号:
    2331111
  • 财政年份:
    2024
  • 资助金额:
    $ 39.67万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了