CCF (CIF): Small: Recursive Reconstruction of Sparse Signal Sequences
CCF (CIF):小:稀疏信号序列的递归重建
基本信息
- 批准号:0917015
- 负责人:
- 金额:$ 27.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Recursive Reconstruction of Sparse Signal SequencesThis research focuses on recursive algorithms for causally reconstructing a time sequence of (approximately) sparse signals from a small number of ``incoherent" linear projections. The algorithms will be useful for real-time dynamic magnetic resonance imaging (MRI) in interventional radiology applications such as image-guided surgery or in functional-MRI. MRI is currently not usable for such real-time applications due to its "relatively slow image acquisition" (large data acquisition times and/or slow image reconstruction algorithms). Other potential applications include dynamic tomography for solar imaging or real-time single-pixel video imaging.Since the recent introduction of compressive sensing (CS), the static version of the above problem has been thoroughly studied. But most existing algorithms for the dynamic problem just use CS to jointly reconstruct the entire time sequence in one go. This is a batch solution and has very high complexity. The alternative - CS at each time (simpleCS) - requires many more measurements. This research is the first to develop and analyze recursive algorithms for signal sequence reconstruction, which have the same complexity as simple CS, but which (a) achieve exact reconstruction using much fewer noise-free measurements than those needed by simple CS; (b) achieve provably smaller reconstruction error than simple CS, when using noisy measurements, especially when the number of measurements is small; and (c) are provably stable over time (reconstruction error remains bounded). Fewer measurements means reduced scan times for MRI, while recursive reconstruction means real-time imaging is possible. By exploiting the fact that sparsity patterns change slowly over time, the problem is formulated as one of compressive sensing with partially known support.CS and sequential CS are incorporated into the graduate/undergraduate curriculum and into senior-design at appropriate levels.
稀疏信号序列的递归重建本研究的重点是递归算法,用于从少量“非相干”线性投影中因果地重建(近似)稀疏信号的时间序列。该算法将用于实时动态磁共振成像(MRI)介入放射学应用,如图像引导手术或功能MRI。由于“相对较慢的图像采集”(大数据采集时间和/或较慢的图像重建算法),MRI目前无法用于此类实时应用。其他潜在的应用包括太阳成像的动态断层扫描或实时单像素视频成像。自从最近引入压缩感知(CS)以来,上述问题的静态版本已经得到了深入的研究。但现有的动态问题算法大多只是利用CS来一次联合重构整个时间序列。这是一个批量解决方案,具有非常高的复杂性。另一种选择-每次CS (simpleCS) -需要更多的测量。本研究首次开发和分析了用于信号序列重建的递归算法,该算法具有与简单CS相同的复杂性,但(a)使用比简单CS所需的无噪声测量少得多的方法实现精确重建;(b)当使用有噪声的测量时,特别是当测量数量较少时,可证明比简单的CS实现更小的重建误差;和(c)可以证明是随时间稳定的(重构误差仍然有界)。更少的测量意味着减少MRI扫描时间,而递归重建意味着实时成像成为可能。通过利用稀疏模式随时间缓慢变化的事实,该问题被描述为具有部分已知支持的压缩感知之一。CS和顺序CS被纳入研究生/本科课程和适当级别的高级设计中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Namrata Vaswani其他文献
Robust PCA With Partial Subspace Knowledge
具有部分子空间知识的鲁棒PCA
- DOI:
10.1109/tsp.2015.2421485 - 发表时间:
2014 - 期刊:
- 影响因子:5.4
- 作者:
Jinchun Zhan;Namrata Vaswani - 通讯作者:
Namrata Vaswani
The Wiener-Khinchin Theorem for Non-wide Sense stationary Random Processes
非广义平稳随机过程的 Wiener-Khinchin 定理
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Wei Lu;Namrata Vaswani - 通讯作者:
Namrata Vaswani
Provable Low Rank Phase Retrieval and Compressive PCA
可证明的低秩相位检索和压缩 PCA
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Seyedehsara Nayer;Praneeth Narayanamurthy;Namrata Vaswani - 通讯作者:
Namrata Vaswani
A linear classifier for Gaussian class conditional distributions with unequal covariance matrices
具有不等协方差矩阵的高斯类条件分布的线性分类器
- DOI:
10.1109/icpr.2002.1048236 - 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
Namrata Vaswani - 通讯作者:
Namrata Vaswani
A PARTICLE FILTER FOR TRACKING ADAPTIVE NEURAL RESPONSES IN AUDITORY CORTEX
用于跟踪听觉皮层自适应神经反应的粒子滤波器
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
M. Jain;Mounya Elhilali;Namrata Vaswani;J. Fritz;S. Shamma - 通讯作者:
S. Shamma
Namrata Vaswani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Namrata Vaswani', 18)}}的其他基金
CIF: Small: Efficient and Secure Federated Structure Learning from Bad Data
CIF:小型:高效、安全的联邦结构从不良数据中学习
- 批准号:
2341359 - 财政年份:2024
- 资助金额:
$ 27.93万 - 项目类别:
Standard Grant
CIF: Small: Secure and Fast Federated Low-Rank Recovery from Few Column-wise Linear, or Quadratic, Projections
CIF:小型:通过少量列线性或二次投影进行安全快速的联合低秩恢复
- 批准号:
2115200 - 财政年份:2021
- 资助金额:
$ 27.93万 - 项目类别:
Standard Grant
CIF: Small: Structured High-dimensional Data Recovery from Phaseless Measurements
CIF:小型:从无相测量中恢复结构化高维数据
- 批准号:
1815101 - 财政年份:2018
- 资助金额:
$ 27.93万 - 项目类别:
Standard Grant
Distributed Recursive Robust Estimation: Theory, Algorithms and Applications in Single and Multi-Camera Computer Vision
分布式递归鲁棒估计:单相机和多相机计算机视觉中的理论、算法和应用
- 批准号:
1509372 - 财政年份:2015
- 资助金额:
$ 27.93万 - 项目类别:
Standard Grant
CIF: Small: Online Algorithms for Streaming Structured Big-Data Mining
CIF:小型:流式结构化大数据挖掘在线算法
- 批准号:
1526870 - 财政年份:2015
- 资助金额:
$ 27.93万 - 项目类别:
Standard Grant
RI: Small: Exploiting Correlated Sparsity Pattern Change in Dynamic Vision Problems
RI:小:利用动态视觉问题中的相关稀疏模式变化
- 批准号:
1117509 - 财政年份:2011
- 资助金额:
$ 27.93万 - 项目类别:
Standard Grant
CIF: Small: Recursive Robust Principal Components' Analyis (PCA)
CIF:小型:递归稳健主成分分析 (PCA)
- 批准号:
1117125 - 财政年份:2011
- 资助金额:
$ 27.93万 - 项目类别:
Standard Grant
Change Detection in Nonlinear Systems and Applications in Shape Analysis
非线性系统中的变化检测及其在形状分析中的应用
- 批准号:
0725849 - 财政年份:2007
- 资助金额:
$ 27.93万 - 项目类别:
Standard Grant
相似国自然基金
Wolbachia的cif因子与天麻蚜蝇dsx基因协同调控生殖不育的机制研究
- 批准号:JCZRQN202501187
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
SHR和CIF协同调控植物根系凯氏带形成的机制
- 批准号:31900169
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343599 - 财政年份:2024
- 资助金额:
$ 27.93万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343600 - 财政年份:2024
- 资助金额:
$ 27.93万 - 项目类别:
Standard Grant
CIF: Small: Learning Low-Dimensional Representations with Heteroscedastic Data Sources
CIF:小:使用异方差数据源学习低维表示
- 批准号:
2331590 - 财政年份:2024
- 资助金额:
$ 27.93万 - 项目类别:
Standard Grant
CIF: Small: NSF-DST: Zak-OTFS - How to Make Communication and Radar Sensing More Predictable in 6G
CIF:小型:NSF-DST:Zak-OTFS - 如何使 6G 中的通信和雷达传感更具可预测性
- 批准号:
2342690 - 财政年份:2024
- 资助金额:
$ 27.93万 - 项目类别:
Standard Grant
CIF: Small: Signal Processing and Learning for NOMA Millimeter-Wave Massive MIMO Systems
CIF:小型:NOMA 毫米波大规模 MIMO 系统的信号处理和学习
- 批准号:
2413622 - 财政年份:2024
- 资助金额:
$ 27.93万 - 项目类别:
Standard Grant
CIF: Small: Efficient and Secure Federated Structure Learning from Bad Data
CIF:小型:高效、安全的联邦结构从不良数据中学习
- 批准号:
2341359 - 财政年份:2024
- 资助金额:
$ 27.93万 - 项目类别:
Standard Grant
CIF: Small: Graph Structure Discovery of Networked Dynamical Systems
CIF:小:网络动力系统的图结构发现
- 批准号:
2327905 - 财政年份:2024
- 资助金额:
$ 27.93万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
- 批准号:
2326622 - 财政年份:2024
- 资助金额:
$ 27.93万 - 项目类别:
Standard Grant
CIF: Small: Ensuring Accuracy in Differentially Private Decentralized Optimization
CIF:小:确保差分隐私去中心化优化的准确性
- 批准号:
2334449 - 财政年份:2024
- 资助金额:
$ 27.93万 - 项目类别:
Standard Grant
CIF: Small: Towards a Control Framework for Neural Generative Modeling
CIF:小:走向神经生成建模的控制框架
- 批准号:
2348624 - 财政年份:2024
- 资助金额:
$ 27.93万 - 项目类别:
Standard Grant














{{item.name}}会员




