MIRT: Building Functional Nanoarchitectures in van der Waals Materials

MIRT:在范德华材料中构建功能性纳米结构

基本信息

  • 批准号:
    1122594
  • 负责人:
  • 金额:
    $ 300万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

This Materials Interdisciplinary Research Team (MIRT) proposal examines the assembly and physical properties of new composite materials created by 'nano-laminating' atomic sheets of different van der Waals (vdW) materials. These vdW building blocks are materials in which the atomic bonds are strong in two directions, but weak in the third. This gives them a layered structure, like a stack of paper, and makes it easy to separate ('exfoliate') the layers. Common vdW materials include graphite, which can be exfoliated to form single sheets (graphene); many high-T superconductors; and layered chalcogenides such as MoS2. Many of these systems already display interesting behavior due to the low dimensionality of their electronic structure. The team pioneered a technique for re-stacking dissimilar vdW materials in a controlled fashion ('nano-lamination'). Using this technique, it is possible to create heterostructures that are essentially designer materials, with control at the level of the individual atomic layer. The aim of the MIRT is to create materials that provide unique functionality that is of interest to fundamental science and engineering applications. The MIRT proposal includes a central synthesis effort that seeks to broaden the set of materials under study from the first examples (graphene and hexagonal boron nitride) to include layered chalcogenides, 2D oxides, topological insulators, and low-dimensional organic systems. The synthesis effort combines nano-lamination with single-crystal growth, molecular beam epitaxy, templated materials growth, and intercalation. Fundamental issues to be addressed include the nature of interfaces between dissimilar layers, how interlayer alignment changes properties, and 'design rules' for growth on vdW surfaces. The MIRT includes extensive characterization of the new materials by multiple techniques. These techniques include structural characterization, electronic transport, optical and Raman spectroscopy, scanned probe microscopy, and chemical methods. Using the techniques and materials developed under the MIRT program, the team seeks to address a number of fundamental issues regarding behavior of materials in low dimensions. For instance, it will be possible to study the 3D-to-2D evolution of correlated electronic behavior such as superconductivity and charge density wave states as the host materials approach the limit of single atomic sheets. Likewise, nano-lamination will allow materials such as topological insulators and superconductors to be brought into proximity in order to probe exotic phases predicted to exist at these interfaces.The MIRT team seeks to broaden the impact of its activities through REU and RET programs, as well as a school visitation program. In addition, a central goal of the MIRT is to strengthen interaction between Columbia and CCNY through better coordination of research and use of shared facilities, as well as joint student advising and recruiting.
该材料跨学科研究小组(MIRT)的建议书研究了由不同货车德瓦耳斯(vdW)材料的“纳米层压”原子片创建的新型复合材料的组装和物理性能。 这些vdW构建块是其中原子键在两个方向上强,但在第三个方向上弱的材料。 这给了它们一个分层的结构,就像一叠纸,并且很容易分离(“剥落”)层。 常见的vdW材料包括石墨,它可以剥离形成单片(石墨烯);许多高T超导体;和层状硫属化物,如MoS 2。 许多这些系统已经显示出有趣的行为,由于其电子结构的低维性。 该团队开创了一种以受控方式重新堆叠不同vdW材料的技术(“纳米层压”)。 使用这种技术,可以创建本质上是设计材料的异质结构,并在单个原子层的水平上进行控制。 MIRT的目标是创造出能够提供基础科学和工程应用所感兴趣的独特功能的材料。 MIRT的提案包括一个中心合成工作,旨在扩大正在研究的材料集,从第一个例子(石墨烯和六方氮化硼),包括层状硫属化物,二维氧化物,拓扑绝缘体和低维有机系统。 合成的努力结合纳米层压与单晶生长,分子束外延,模板材料生长和插层。 需要解决的基本问题包括不同层之间界面的性质、层间排列如何改变性质以及vdW表面生长的“设计规则”。 MIRT包括通过多种技术对新材料的广泛表征。 这些技术包括结构表征、电子输运、光学和拉曼光谱、扫描探针显微镜和化学方法。 利用MIRT计划开发的技术和材料,该团队试图解决一些关于低维材料行为的基本问题。 例如,当主体材料接近单原子片的极限时,将有可能研究相关电子行为的3D到2D演化,例如超导性和电荷密度波态。 同样,纳米层压技术将使拓扑绝缘体和超导体等材料相互接近,以探测预测存在于这些界面的奇异相。MIRT团队寻求通过REU和RET项目以及学校访问计划扩大其活动的影响。 此外,MIRT的一个中心目标是通过更好地协调研究和使用共享设施以及联合学生咨询和招生,加强哥伦比亚和CCNY之间的互动。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Hone其他文献

Spin-selective magneto-conductivity in WSe2
WSe2 中的自旋选择性磁导率
  • DOI:
    10.1038/s41567-025-02918-5
  • 发表时间:
    2025-06-09
  • 期刊:
  • 影响因子:
    18.400
  • 作者:
    En-Min Shih;Qianhui Shi;Daniel Rhodes;Bumho Kim;Kenji Watanabe;Takashi Taniguchi;Kun Yang;James Hone;Cory R. Dean
  • 通讯作者:
    Cory R. Dean
Superconductivity in 5.0° twisted bilayer WSe2
5.0°扭曲双层 WSe2 中的超导性
  • DOI:
    10.1038/s41586-024-08381-1
  • 发表时间:
    2025-01-22
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Yinjie Guo;Jordan Pack;Joshua Swann;Luke Holtzman;Matthew Cothrine;Kenji Watanabe;Takashi Taniguchi;David G. Mandrus;Katayun Barmak;James Hone;Andrew J. Millis;Abhay Pasupathy;Cory R. Dean
  • 通讯作者:
    Cory R. Dean
Two-dimensional flexible nanoelectronics
二维柔性纳米电子学
  • DOI:
    10.1038/ncomms6678
  • 发表时间:
    2014-12-17
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Deji Akinwande;Nicholas Petrone;James Hone
  • 通讯作者:
    James Hone
Screen printing of 2D semiconductors
二维半导体的丝网印刷
  • DOI:
    10.1038/nature21908
  • 发表时间:
    2017-04-05
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Young Duck Kim;James Hone
  • 通讯作者:
    James Hone
Growth of nanotubes and chemical sensor applications
纳米管和化学传感器应用的增长

James Hone的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Hone', 18)}}的其他基金

Collaborative Research: Plasmonic lasing with two-dimensional heterostructures in the intrinsic regime
合作研究:本征状态下具有二维异质结构的等离激元激光
  • 批准号:
    1809361
  • 财政年份:
    2018
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
Collaborative Research: Cavity-Enhanced Exciton Emission from Carbon Nanotubes in the Intrinsic Regime
合作研究:本征态碳纳米管的空腔增强激子发射
  • 批准号:
    1507423
  • 财政年份:
    2015
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
MRSEC: Columbia Center for Precision Assembly of Superstratic and Superatomic Solids
MRSEC:哥伦比亚超地层和超原子固体精密组装中心
  • 批准号:
    1420634
  • 财政年份:
    2014
  • 资助金额:
    $ 300万
  • 项目类别:
    Cooperative Agreement
NEB: Novel Quantum Switches Using Heterogeneous Atomically Layered Nanostructures
NEB:使用异质原子层状纳米结构的新型量子开关
  • 批准号:
    1124894
  • 财政年份:
    2011
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
Collaborative Research: The Origin of Resistance in Nanotubes: Semi-classical to Quantum Transport in One-Dimension
合作研究:纳米管电阻的起源:一维量子传输的半经典
  • 批准号:
    1006533
  • 财政年份:
    2010
  • 资助金额:
    $ 300万
  • 项目类别:
    Continuing Grant
NIRT: Biomolecular-Scale Nanofabrication for Investigation of Signaling, Motility, and Motor Protein Complexes
NIRT:用于研究信号传导、运动性和运动蛋白复合物的生物分子规模纳米加工
  • 批准号:
    0507086
  • 财政年份:
    2005
  • 资助金额:
    $ 300万
  • 项目类别:
    Continuing Grant
Sensors: High Dynamic Range Flow Sensing with Carbon Nanotubes
传感器:采用碳纳米管的高动态范围流量传感
  • 批准号:
    0428716
  • 财政年份:
    2004
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant

相似国自然基金

基于支链淀粉building blocks构建优质BE突变酶定向修饰淀粉调控机制的研究
  • 批准号:
    31771933
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

REU Site: Chemistry Pathways to Building Functional Materials at the University of Texas at Dallas
REU 网站:德克萨斯大学达拉斯分校构建功能材料的化学途径
  • 批准号:
    2244549
  • 财政年份:
    2023
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
Collaborative Research: TRTech-PGR: PlantSynBio: FuncZyme: Building a pipeline for rapid prediction and functional validation of plant enzyme activities
合作研究:TRTech-PGR:PlantSynBio:FuncZyme:建立植物酶活性快速预测和功能验证的管道
  • 批准号:
    2310396
  • 财政年份:
    2023
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
Collaborative Research: TRTech-PGR: PlantSynBio: FuncZyme: Building a pipeline for rapid prediction and functional validation of plant enzyme activities
合作研究:TRTech-PGR:PlantSynBio:FuncZyme:建立植物酶活性快速预测和功能验证的管道
  • 批准号:
    2310395
  • 财政年份:
    2023
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
Functional Nucleic Acids as Versatile SMart BUilding BLocks in Non-Conventlonal SolvenTs
功能性核酸作为非常规溶剂中的多功能智能构建模块
  • 批准号:
    10077478
  • 财政年份:
    2023
  • 资助金额:
    $ 300万
  • 项目类别:
    EU-Funded
Bio-fabrication of sustainable functional bacterial cellulose aerogel for building insulation
用于建筑隔热的可持续功能性细菌纤维素气凝胶的生物制造
  • 批准号:
    EP/X02041X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 300万
  • 项目类别:
    Research Grant
Cereal Storage Proteins: unique, intriguing and highly functional building blocks in cereal processing and beyond
谷物储存蛋白:谷物加工及其他领域独特、有趣且功能强大的构建模块
  • 批准号:
    RGPIN-2017-05213
  • 财政年份:
    2022
  • 资助金额:
    $ 300万
  • 项目类别:
    Discovery Grants Program - Individual
Building of a functional single cell proteomics resource for the study the DNA damage response
构建用于研究 DNA 损伤反应的功能性单细胞蛋白质组学资源
  • 批准号:
    DGECR-2022-00269
  • 财政年份:
    2022
  • 资助金额:
    $ 300万
  • 项目类别:
    Discovery Launch Supplement
Building of a functional single cell proteomics resource for the study the DNA damage response
构建用于研究 DNA 损伤反应的功能性单细胞蛋白质组学资源
  • 批准号:
    RGPIN-2022-03973
  • 财政年份:
    2022
  • 资助金额:
    $ 300万
  • 项目类别:
    Discovery Grants Program - Individual
NSF-DFG Confine: Building functional supraparticles through directed assembly of nonspherical nanoparticles under confinement
NSF-DFG Confine:通过在限制下定向组装非球形纳米粒子来构建功能性超粒子
  • 批准号:
    2223453
  • 财政年份:
    2022
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
MoCeIS-DCL : Building a Network for Functional Annotation of Protein Families
MoCeIS-DCL:构建蛋白质家族功能注释网络
  • 批准号:
    2129768
  • 财政年份:
    2021
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了