NEB: Novel Quantum Switches Using Heterogeneous Atomically Layered Nanostructures

NEB:使用异质原子层状纳米结构的新型量子开关

基本信息

  • 批准号:
    1124894
  • 负责人:
  • 金额:
    $ 130万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-15 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

This project is awarded under the Nanoelectronics for 2020 and Beyond competition, with support by multiple Directorates and Divisions at the National Science Foundation as well as by the Nanoelectronics Research Initiative of the Semiconductor Research Corporation.TECHNICAL: The search for high-performance electronic switches operating at low power dissipation has generated many concepts that go beyond the control of charge flow in traditional semiconductor device structures. These novel devices are based on the use of alternative state variables, including the characteristics of single-particle quantum systems, such as spin, pseudospin, and carrier wave-function phase, and the characteristics of correlated many-body quantum systems, such as excitons and exciton condensates. The goal of this project is to develop the basis for transformative technology that would be made possible by the availability of high-performance electronic devices employing such quantum state variables, rather than traditional semi-classical transport of charge. To this end, a team of investigators at Columbia University and University of Florida is devoted to the fabrication, characterization, and theoretical analysis of such quantum switches. The research exploits recent technological advances in the synthesis of atomically thin layers of van der Waals solids and heterostructures formed from combinations of such layered materials. The potential of this approach is exemplified by the excellent electrical characteristics exhibited by heterostructures of atomically thin layers of graphene and hexagonal boron nitride. In this project, devices are built from such well-developed material systems, where the primary fabrication challenges involve precise control over geometry and interface cleanliness. The key research components of the project are as follows: (i) The assembly and fabrication of atomically thin heterostructure devices based on the co-lamination of van der Waals materials, atomic-layer deposition processes, and advanced patterning techniques; (ii) the analysis of distinctive quantum coherent transport processes in weakly coupled layered heterojunction device structures by electrical and optical measurements; (iii) the establishment of new state variables based on quantum coherence; and (iv) the demonstration, characterization, and theoretical modeling of switching devices based on novel state variables. Devices resulting from this research effort promise performance with respect to switching speed and energy dissipation that significantly exceeds the limits imposed by conventional semiconductor device technology.NON-TECHNICAL: The development of the new electronic devices based on low-dimensional functional material platforms opens important directions in both fundamental and applied research. The availability of practical high-performance, low-energy switching devices is of great significance for the continued advancement of electronics and the associated information technology industry. Thus, the demonstration of devices based on new switching principles has the potential for broad technological impact. The diverse capabilities of the team also significantly enhance the educational opportunities for students and postdocs at Columbia and at collaborating institutions. The highly interdisciplinary research carried out in this project provides cutting-edge training for graduate students and postdocs, as well as for undergraduate students. The team integrates research activities with educational efforts by offering new lecture and laboratory courses, as well as modifying existing ones. The team also undertakes broader educational outreach through sponsorship of summer research projects for high school students. Significant efforts are made toward K-12 outreach by training of highly motivated high school students, and by enhancing interactions with local K-12 educators to introduce front-line research to students.
该项目是在2020年纳米电子学和超越竞赛下授予的,得到了美国国家科学基金会多个部门和部门以及半导体研究公司纳米电子学研究计划的支持。技术:对低功耗高性能电子开关的研究已经产生了许多超出传统半导体器件结构中电荷流控制的概念。这些新型器件基于可选状态变量的使用,包括单粒子量子系统的特征,如自旋、伪自旋和载流子函数相,以及相关多体量子系统的特征,如激子和激子凝聚体。该项目的目标是为采用这种量子态变量而不是传统的半经典电荷输运的高性能电子设备的可用性开发变革性技术的基础。为此,哥伦比亚大学和佛罗里达大学的一组研究人员致力于这种量子开关的制造、表征和理论分析。这项研究利用了合成原子薄层范德华固体和由这些层状材料组合形成的异质结构的最新技术进展。石墨烯和六方氮化硼原子薄层的异质结构所表现出的优异电特性证明了这种方法的潜力。在这个项目中,设备是由这些发达的材料系统建造的,其中主要的制造挑战包括对几何形状和界面清洁度的精确控制。项目主要研究内容如下:(1)基于范德华材料共层、原子层沉积工艺和先进图像化技术的原子薄异质结构器件的组装与制造;(ii)通过电学和光学测量分析弱耦合层状异质结器件结构中不同的量子相干输运过程;(iii)基于量子相干的新状态变量的建立;(iv)基于新型状态变量的开关器件的演示、表征和理论建模。这项研究成果所产生的器件在开关速度和能量消耗方面的性能大大超过了传统半导体器件技术所施加的限制。非技术:基于低维功能材料平台的新型电子器件的发展为基础研究和应用研究开辟了重要方向。实用的高性能、低能量开关器件的可用性对于电子和相关信息技术产业的持续发展具有重要意义。因此,基于新开关原理的设备演示具有广泛技术影响的潜力。团队的多样化能力也大大提高了哥伦比亚大学和合作机构的学生和博士后的教育机会。该项目开展的高度跨学科的研究为研究生、博士后和本科生提供了前沿的培训。该团队通过提供新的讲座和实验课程以及修改现有课程,将研究活动与教育工作结合起来。该团队还通过赞助高中生暑期研究项目开展更广泛的教育推广活动。通过培训积极性高的高中生,加强与当地K-12教育工作者的互动,向学生介绍一线研究,为K-12的推广做出了重大努力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Hone其他文献

Spin-selective magneto-conductivity in WSe2
WSe2 中的自旋选择性磁导率
  • DOI:
    10.1038/s41567-025-02918-5
  • 发表时间:
    2025-06-09
  • 期刊:
  • 影响因子:
    18.400
  • 作者:
    En-Min Shih;Qianhui Shi;Daniel Rhodes;Bumho Kim;Kenji Watanabe;Takashi Taniguchi;Kun Yang;James Hone;Cory R. Dean
  • 通讯作者:
    Cory R. Dean
Screen printing of 2D semiconductors
二维半导体的丝网印刷
  • DOI:
    10.1038/nature21908
  • 发表时间:
    2017-04-05
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Young Duck Kim;James Hone
  • 通讯作者:
    James Hone
Two-dimensional flexible nanoelectronics
二维柔性纳米电子学
  • DOI:
    10.1038/ncomms6678
  • 发表时间:
    2014-12-17
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Deji Akinwande;Nicholas Petrone;James Hone
  • 通讯作者:
    James Hone
Superconductivity in 5.0° twisted bilayer WSe2
5.0°扭曲双层 WSe2 中的超导性
  • DOI:
    10.1038/s41586-024-08381-1
  • 发表时间:
    2025-01-22
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Yinjie Guo;Jordan Pack;Joshua Swann;Luke Holtzman;Matthew Cothrine;Kenji Watanabe;Takashi Taniguchi;David G. Mandrus;Katayun Barmak;James Hone;Andrew J. Millis;Abhay Pasupathy;Cory R. Dean
  • 通讯作者:
    Cory R. Dean
Growth of nanotubes and chemical sensor applications
纳米管和化学传感器应用的增长

James Hone的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Hone', 18)}}的其他基金

Collaborative Research: Plasmonic lasing with two-dimensional heterostructures in the intrinsic regime
合作研究:本征状态下具有二维异质结构的等离激元激光
  • 批准号:
    1809361
  • 财政年份:
    2018
  • 资助金额:
    $ 130万
  • 项目类别:
    Standard Grant
Collaborative Research: Cavity-Enhanced Exciton Emission from Carbon Nanotubes in the Intrinsic Regime
合作研究:本征态碳纳米管的空腔增强激子发射
  • 批准号:
    1507423
  • 财政年份:
    2015
  • 资助金额:
    $ 130万
  • 项目类别:
    Standard Grant
MRSEC: Columbia Center for Precision Assembly of Superstratic and Superatomic Solids
MRSEC:哥伦比亚超地层和超原子固体精密组装中心
  • 批准号:
    1420634
  • 财政年份:
    2014
  • 资助金额:
    $ 130万
  • 项目类别:
    Cooperative Agreement
MIRT: Building Functional Nanoarchitectures in van der Waals Materials
MIRT:在范德华材料中构建功能性纳米结构
  • 批准号:
    1122594
  • 财政年份:
    2011
  • 资助金额:
    $ 130万
  • 项目类别:
    Continuing Grant
Collaborative Research: The Origin of Resistance in Nanotubes: Semi-classical to Quantum Transport in One-Dimension
合作研究:纳米管电阻的起源:一维量子传输的半经典
  • 批准号:
    1006533
  • 财政年份:
    2010
  • 资助金额:
    $ 130万
  • 项目类别:
    Continuing Grant
NIRT: Biomolecular-Scale Nanofabrication for Investigation of Signaling, Motility, and Motor Protein Complexes
NIRT:用于研究信号传导、运动性和运动蛋白复合物的生物分子规模纳米加工
  • 批准号:
    0507086
  • 财政年份:
    2005
  • 资助金额:
    $ 130万
  • 项目类别:
    Continuing Grant
Sensors: High Dynamic Range Flow Sensing with Carbon Nanotubes
传感器:采用碳纳米管的高动态范围流量传感
  • 批准号:
    0428716
  • 财政年份:
    2004
  • 资助金额:
    $ 130万
  • 项目类别:
    Standard Grant

相似国自然基金

Novel-miR-1134调控LHCGR的表达介导拟 穴青蟹卵巢发育的机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
novel-miR75靶向OPR2,CA2和STK基因调控人参真菌胁迫响应的分子机制研究
  • 批准号:
    82304677
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
海南广藿香Novel17-GSO1响应p-HBA调控连作障碍的分子机制
  • 批准号:
    82304658
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
白术多糖通过novel-mir2双靶向TRADD/MLKL缓解免疫抑制雏鹅的胸腺程序性坏死
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
novel_circ_008138/rno-miR-374-3p/SFRP4调控Wnt信号通路参与先天性肛门直肠畸形发生的分子机制研究
  • 批准号:
    82070530
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
miRNA-novel-272通过靶向半乳糖凝集素3调控牙鲆肠道上皮细胞炎症反应的机制研究
  • 批准号:
    32002421
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
m6A修饰介导的lncRNA WEE2-AS1转录后novel-pri-miRNA剪切机制在胶质瘤恶性进展中的作用研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
miRNA/novel_167靶向抑制Dmrt1的表达在红鳍东方鲀性别分化过程中的功能研究
  • 批准号:
    31902347
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

STTR Phase I: Innovating Micro-Light Emitting Diode (LED) Manufacturing with Novel Quantum Dot Micro-Patterning Technology
STTR 第一阶段:利用新型量子点微图案化技术创新微发光二极管 (LED) 制造
  • 批准号:
    2335283
  • 财政年份:
    2024
  • 资助金额:
    $ 130万
  • 项目类别:
    Standard Grant
CAREER: Complexity Theory of Quantum States: A Novel Approach for Characterizing Quantum Computer Science
职业:量子态复杂性理论:表征量子计算机科学的新方法
  • 批准号:
    2339116
  • 财政年份:
    2024
  • 资助金额:
    $ 130万
  • 项目类别:
    Continuing Grant
EAGER: IMPRESS-U: Quantum dynamics in novel chalcogenide materials and devices
EAGER:IMPRESS-U:新型硫族化物材料和器件中的量子动力学
  • 批准号:
    2403609
  • 财政年份:
    2024
  • 资助金额:
    $ 130万
  • 项目类别:
    Standard Grant
Research in Novel Symmetries of Quantum Field Theory and String Theory
量子场论和弦理论的新对称性研究
  • 批准号:
    2310279
  • 财政年份:
    2023
  • 资助金额:
    $ 130万
  • 项目类别:
    Continuing Grant
Novel INFIQ® Lead-Free Infrared Quantum Dot Inks for Photovoltaic Applications
适用于光伏应用的新型 INFIQ® 无铅红外量子点墨水
  • 批准号:
    10064218
  • 财政年份:
    2023
  • 资助金额:
    $ 130万
  • 项目类别:
    Collaborative R&D
Exploring Novel Phenomena in Correlated Quantum Systems
探索相关量子系统中的新现象
  • 批准号:
    2889881
  • 财政年份:
    2023
  • 资助金额:
    $ 130万
  • 项目类别:
    Studentship
Improved optimization of covalent ligands using a novel implementation of quantum mechanics suitable for large ligand/protein systems.
使用适用于大型配体/蛋白质系统的量子力学的新颖实现改进了共价配体的优化。
  • 批准号:
    10601968
  • 财政年份:
    2023
  • 资助金额:
    $ 130万
  • 项目类别:
Microscopic investigation of crystal structures at 100 Tesla using novel quantum beams
使用新型量子束在 100 特斯拉下对晶体结构进行显微研究
  • 批准号:
    23H01121
  • 财政年份:
    2023
  • 资助金额:
    $ 130万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
QuSeC-TAQS: Novel Quantum Algorithms for Optical Atomic Clocks
QuSeC-TAQS:用于光学原子钟的新型量子算法
  • 批准号:
    2326810
  • 财政年份:
    2023
  • 资助金额:
    $ 130万
  • 项目类别:
    Continuing Grant
A novel, quantum model for NLP: a step towards AGI.
一种新颖的 NLP 量子模型:迈向 AGI 的一步。
  • 批准号:
    10075658
  • 财政年份:
    2023
  • 资助金额:
    $ 130万
  • 项目类别:
    Feasibility Studies
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了