BRIGE: Functionalized electrospun membrane development and characterization for water disinfection
BRIGE:用于水消毒的功能化电纺膜开发和表征
基本信息
- 批准号:1125585
- 负责人:
- 金额:$ 17.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-15 至 2014-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PI: HeldtProposal Number: 1125585Intellectual MeritThe World Health Organization estimates that 1.7 million people die each year due to infectious diarrhea that is transmitted through the drinking water supply, demonstrating the need for improved disinfection technologies. The long-term goal is to create inexpensive, functionalized membranes that will remove viruses and bacteria by adsorption onto large pore size membranes to allow high water fluxes. The large pore size membranes will decrease membrane fouling and transmembrane pressure. As a first step to attaining this long-term goal, the objective of this NSF-BRIGE grant is to create peptide-functionalized electrospun membranes and quantify their flux, transport properties, and virus removal capacity. This is based on the hypothesis that peptide-functionalized electrospun membranes will adsorb virus particles and retain them during filtration without the need of a purely size-based separation. This hypothesis is supported by (i) the desirable properties of electrospun chitosan membranes, and (ii) experimental evidence obtained by the PI that small peptides capture and remove viruses from solution. The substantial increase in mechanistic understanding of virus removal created during this grant period will allow the PI to undertake exploratory research in her newly developed laboratory and foster new collaborations. The specific goals to be accomplished that test the hypothesis are: Goal 1: Analyze and model the virus capture of electrospun chitosan membranes and Goal 2: Enhance virus capture with addition of small virus-binding peptides. The proposed research is innovative and novel because it analyzes and models unique virus removal membranes for water disinfection by adsorbing virus with multifunctional peptides instead of removing the virus purely by size exclusion. This will increase the water flux, decrease the transmembrane pressure, and decrease membrane fouling. In addition, the ability to add functionality to the membrane surface allows other functionality to be added in the future to increase the disinfection capacity, including antimicrobial peptides. The expected outcomes of this research are to analyze and compare the adsorption and flow properties of electrospun chitosan membranes (Goal 1) and peptide-functionalized membranes (Goal 2). This will produce membranes that reduce the viral load of PPV (a model virus) in drinking water by greater than 99.99%, an EPA regulated virus reduction minimum. Development and characterization of this novel membrane will be a substantial step toward the long-term goal of creating a portable, high flux, and sustainable water disinfection process. This proposed research is expected to bring in-depth knowledge of (i) the mechanism of small peptide affinity adsorption of viruses, (ii) the flow properties of electrospun membranes, and (iii) the stability of electrospun chitosan membranes as filtration media while (iv) educating young engineers to tackle global problems with innovative and multidisciplinary approaches. This membrane development and characterization is significant because it will lead to new water purification technologies that will save lives in underdeveloped countries as well as here in the U.S.Broader ImpactsThe proposed activities in this grant will strengthen the research, education, and outreach at Michigan Tech, the local Great Lakes region, and throughout the underdeveloped world. Clean water is a natural resource that we must manage properly so that it will be available for generations to come. This proposal will bring new insight into environmentally friendly and low energy water purification systems that can be used in underdeveloped nations, municipal water treatment and rural communities that could save millions of lives. The included education and outreach plan will introduce students from primary education up to graduate students to the STEM fields and the need to produce clean water for the poorest people in this world. Participation in SYP, MiCUP, and the Western U.P. Science Fair will attract underrepresented and economically disadvantaged groups and bring them to Michigan Tech to experience handson science and engineering programs and encourage them to pursue a career in a STEM fields.
世界卫生组织估计,每年有170万人死于通过饮用水传播的传染性腹泻,这表明需要改进消毒技术。长期目标是制造廉价的功能化膜,通过吸附在大孔径膜上来去除病毒和细菌,从而实现高水通量。大孔径膜可以降低膜污染和膜间压力。作为实现这一长期目标的第一步,nsf - bridge基金的目标是创造肽功能化的电纺丝膜,并量化它们的通量、运输性质和病毒去除能力。这是基于一种假设,即肽功能化的静电纺丝膜将在过滤过程中吸附病毒颗粒并保留它们,而不需要纯粹的基于尺寸的分离。这一假设得到了以下方面的支持:(i)电纺壳聚糖膜的理想性能,以及(ii)由PI获得的小肽捕获并从溶液中去除病毒的实验证据。在此资助期间,对病毒去除机制的理解大幅增加,将使PI能够在她新开发的实验室进行探索性研究,并促进新的合作。测试假设的具体目标是:目标1:分析和模拟静电纺壳聚糖膜的病毒捕获,目标2:通过添加小病毒结合肽来增强病毒捕获。该研究具有创新性和新颖性,因为它分析和模拟了一种独特的水消毒病毒去除膜,该膜通过多功能肽吸附病毒而不是纯粹通过大小排除来去除病毒。这将增加水通量,降低跨膜压力,减少膜污染。此外,在膜表面添加功能的能力允许将来添加其他功能以增加消毒能力,包括抗菌肽。本研究的预期结果是分析和比较静电纺壳聚糖膜(目标1)和肽功能化膜(目标2)的吸附和流动特性。这将产生的膜将饮用水中PPV(一种模型病毒)的病毒载量降低99.99%以上,这是EPA规定的病毒降低的最低限度。这种新型膜的开发和表征将朝着创造便携式、高通量和可持续的水消毒过程的长期目标迈出实质性的一步。这项建议的研究预计将带来深入的知识(i)小肽对病毒的亲和力吸附机制,(ii)静电纺膜的流动特性,以及(iii)静电纺壳聚糖膜作为过滤介质的稳定性,同时(iv)教育年轻工程师以创新和多学科的方法解决全球性问题。这种膜的开发和表征是非常重要的,因为它将导致新的水净化技术,这将拯救欠发达国家和美国的生命。更广泛的影响本赠款中拟议的活动将加强密歇根理工大学、当地五大湖地区和整个欠发达国家的研究、教育和推广。清洁的水是一种自然资源,我们必须妥善管理,以便子孙后代都能使用。这一提议将为环保和低能耗的水净化系统带来新的见解,这些系统可用于不发达国家,市政水处理和农村社区,可以挽救数百万人的生命。包括教育和推广计划将向从小学到研究生的学生介绍STEM领域,以及为世界上最贫穷的人生产清洁水的必要性。参与SYP、MiCUP和Western up科学博览会将吸引代表性不足和经济弱势群体,并将他们带到密歇根理工大学体验动手科学和工程项目,并鼓励他们在STEM领域寻求职业发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Caryn Heldt其他文献
Caryn Heldt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Caryn Heldt', 18)}}的其他基金
Collaborative Research: DMREF: Predicting Molecular Interactions to Stabilize Viral Therapies
合作研究:DMREF:预测分子相互作用以稳定病毒疗法
- 批准号:
2118693 - 财政年份:2021
- 资助金额:
$ 17.42万 - 项目类别:
Standard Grant
Driving forces in aqueous two-phase systems for vaccine development
疫苗开发的水性两相系统的驱动力
- 批准号:
1818906 - 财政年份:2018
- 资助金额:
$ 17.42万 - 项目类别:
Standard Grant
IRES: US-Denmark Collaboration to Create Next Generation Biosensors
IRES:美国-丹麦合作创建下一代生物传感器
- 批准号:
1559445 - 财政年份:2016
- 资助金额:
$ 17.42万 - 项目类别:
Standard Grant
GOALI: Graphene Paper Sensor for Disease Detection
GOALI:用于疾病检测的石墨烯纸传感器
- 批准号:
1510006 - 财政年份:2015
- 资助金额:
$ 17.42万 - 项目类别:
Standard Grant
CAREER: Surface and Interparticle Forces for Improved Virus Removal
职业:表面力和颗粒间力可改善病毒去除效果
- 批准号:
1451959 - 财政年份:2015
- 资助金额:
$ 17.42万 - 项目类别:
Continuing Grant
Precipitation and Self-Interaction of Viruses by Preferential Hydration
病毒通过优先水合的沉淀和自相互作用
- 批准号:
1159425 - 财政年份:2012
- 资助金额:
$ 17.42万 - 项目类别:
Continuing Grant
相似海外基金
Continuous, Large-scale Manufacturing of Functionalized Silver Nanowire Transparent Conducting Films
功能化银纳米线透明导电薄膜的连续大规模制造
- 批准号:
2422696 - 财政年份:2024
- 资助金额:
$ 17.42万 - 项目类别:
Standard Grant
A methodology to connect functionalized gonadal constructs to a chick embryo through mechanically induced blood vessels from an egg
一种通过鸡蛋机械诱导血管将功能化性腺结构连接到鸡胚胎的方法
- 批准号:
24K15741 - 财政年份:2024
- 资助金额:
$ 17.42万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
NPBactID - Differential binding of peptoid functionalized nanoparticles to bacteria for identifying specific strains
NPBactID - 类肽功能化纳米粒子与细菌的差异结合,用于识别特定菌株
- 批准号:
EP/Y029542/1 - 财政年份:2024
- 资助金额:
$ 17.42万 - 项目类别:
Fellowship
EAGER: CET: Functionalized Graphene for Sustainable Rare Earth Metal Separation
EAGER:CET:用于可持续稀土金属分离的功能化石墨烯
- 批准号:
2337221 - 财政年份:2023
- 资助金额:
$ 17.42万 - 项目类别:
Standard Grant
Dual Catalysis of Superatomic Metal Nanocluster Functionalized by Supramolecular Reaction Field
超分子反应场功能化超原子金属纳米团簇的双重催化
- 批准号:
23KJ1383 - 财政年份:2023
- 资助金额:
$ 17.42万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Towards Ultrasensitive Detection of Bacterial Extracellular Electron Transfer in Human Gut by Novel Functionalized Carbon Nanotube Electrode Interfaces and Organic Microbial Electrochemical Transistor
通过新型功能化碳纳米管电极接口和有机微生物电化学晶体管对人体肠道中细菌细胞外电子转移进行超灵敏检测
- 批准号:
23K13651 - 财政年份:2023
- 资助金额:
$ 17.42万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unprecedented and potent immunoregulation provided by protein capture with functionalized small synthetic nucleic acids
通过功能化小合成核酸捕获蛋白质提供前所未有的有效免疫调节
- 批准号:
23H00317 - 财政年份:2023
- 资助金额:
$ 17.42万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
EFRI ELiS: Biofilm-functionalized and -maintained, living infrastructure systems
EFRI ELiS:生物膜功能化和维护的生活基础设施系统
- 批准号:
2223756 - 财政年份:2023
- 资助金额:
$ 17.42万 - 项目类别:
Continuing Grant
Boron-Functionalized pi-Conjugated Materials with Tailored Properties
具有定制特性的硼功能化π共轭材料
- 批准号:
2247211 - 财政年份:2023
- 资助金额:
$ 17.42万 - 项目类别:
Standard Grant
A general way to selective-functionalized pillar[n]arenes and their supramolecular mate rials
选择性功能化柱芳烃及其超分子材料的通用方法
- 批准号:
23KF0235 - 财政年份:2023
- 资助金额:
$ 17.42万 - 项目类别:
Grant-in-Aid for JSPS Fellows