Electric Field Control of Spin Dynamics in Metal Spintronic Devices

金属自旋电子器件中自旋动力学的电场控制

基本信息

  • 批准号:
    1128439
  • 负责人:
  • 金额:
    $ 34.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-10-01 至 2014-09-30
  • 项目状态:
    已结题

项目摘要

The objective of the proposed program is to realize electric field control of the magnetic state in novel metal spintronic device structures. The approach exploits new and largely unexplored magnetoelectric effects in ultrathin metallic ferromagnetic films. Experiments focus on materials and heterostructures in which the magnetic behavior is dictated by broken symmetries at the surface or interface. Strong electric fields will be used to induce spin-dependent surface charge layers to influence the surface electronic structure and modulate key magnetic parameters (magnetic anisotropy, magnetization, spin polarization and spin-transport characteristics) at surfaces and interfaces. The program will (1) provide fundamental insight, via a systematic experimental dataset, of the mechanisms enabling electric field manipulation of surface magnetism and spin transport and (2) examine specific model devices in which electric fields can excite and control spin dynamics and large-angle magnetic switching. The work addresses the pressing need for efficient modes of operation in advanced spin-based electronics, and avoids key limitations in existing approaches. If successful, these fundamental studies will enable revolutionary new memory and logic device capabilities, offering enhanced performance and durability with ultralow power consumption requirements. The proposed research provides a platform for and will be tightly integrated with educational development at the undergraduate and graduate student level, as well as through involvement of local high school teachers.Intellectual Merit:The proposed research addresses key fundamental issues in nanoscale magnetism and spin-electronics. Electrical manipulation of the electron spin degree of freedom is one of the forefront areas of nanoscience research today. This program explores new means to electrically manipulate the magnetic state, and will give key fundamental insights on the roles of interfacial electronic structure in the behavior of ultrathin (down to single atomic layer) magnetic materials. Materials systems are chosen such that key parameters (i.e., band level filling) can be continuously tuned in model systems, together with new heterostructures in which novel and heretofore unobserved electric field effects are anticipated. Geometrically-constrained micro- and nano-structures will be fabricated and characterized experimentally and through extensive micromagnetic simulations in order to understand how controlled modulation of magnetic surface anisotropy can be used to drive magnetization dynamics and magnetic switching of spin configurations such as magnetic vortices and magnetic domain walls.Broader Impacts:If successful, the proposed fundamental research could have broad technological impacts by bringing about new classes of ?spintronic? devices for ultra low-power, high-performance computation and mass data storage, significantly impacting mobile computing and global energy efficiency. The research will train undergraduate and graduate students in key areas in nanotechnology including advanced thin-film growth and characterization, nanofabrication, and spintronics. The program will support an international collaboration between the early-career PI and colleagues at the Max Planck Institute in Halle, Germany, and will offer international scientific training and experience to the supported graduate student. The program integrates research and education by teaming undergraduates with graduate students through the MIT Undergraduate Research Opportunities Program, and through development of course materials and instructional laboratory modules. The PI will make use of the outreach infrastructure of MIT?s Center for Material Science and Engineering (CMSE), and NSF MRSEC, to host high school teachers through the NSF-RET program, and local underrepresented community college students through the CMSE community college program.
该程序的目标是实现新型金属自旋电子器件结构中磁态的电场控制。该方法利用了超薄金属铁磁薄膜中新的、很大程度上尚未探索的磁电效应。实验集中在材料和异质结构上,其中磁性行为由表面或界面处的对称性破缺决定。强电场将用于诱导自旋相关的表面电荷层,以影响表面电子结构并调制表面和界面处的关键磁参数(磁各向异性、磁化强度、自旋极化和自旋输运特性)。该计划将(1)通过系统的实验数据集提供对电场操纵表面磁性和自旋输运的机制的基本见解,以及(2)检查电场可以激发和控制自旋动力学和大角度磁开关的特定模型设备。这项工作解决了先进的自旋电子学中对高效操作模式的迫切需求,并避免了现有方法的关键限制。如果成功,这些基础研究将实现革命性的新存储器和逻辑器件功能,提供增强的性能和耐用性以及超低功耗要求。拟议的研究为本科生和研究生的教育发展以及当地高中教师的参与提供了一个平台,并将与教育发展紧密结合。智力价值:拟议的研究解决了纳米级磁性和自旋电子学的关键基本问题。电子自旋自由度的电操纵是当今纳米科学研究的前沿领域之一。该项目探索了电操纵磁性状态的新方法,并将提供关于界面电子结构在超薄(低至单原子层)磁性材料行为中的作用的关键基本见解。选择材料系统,以便可以在模型系统中连续调整关键参数(即带级填充),以及新的异质结构,其中预计会出现新颖且迄今为止未观察到的电场效应。几何约束的微米和纳米结构将通过实验和广泛的微磁模拟来制造和表征,以了解如何使用磁表面各向异性的受控调制来驱动磁化动力学和自旋配置(例如磁涡流和磁畴壁)的磁切换。更广泛的影响:如果成功,拟议的基础研究可能会通过带来新类别的 ?自旋电子学?超低功耗、高性能计算和海量数据存储设备,显着影响移动计算和全球能源效率。该研究将为纳米技术关键领域的本科生和研究生提供培训,包括先进薄膜生长和表征、纳米制造和自旋电子学。该项目将支持早期职业 PI 与德国哈雷马克斯·普朗克研究所的同事之间的国际合作,并将为受支持的研究生提供国际科学培训和经验。该项目通过麻省理工学院本科生研究机会项目,通过课程材料和教学实验室模块的开发,将本科生与研究生结合起来,将研究和教育结合起来。 PI 将利用麻省理工学院材料科学与工程中心 (CMSE) 和 NSF MRSEC 的外展基础设施,通过 NSF-RET 计划接待高中教师,并通过 CMSE 社区大学计划接待当地代表性不足的社区学院学生。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Geoffrey Beach其他文献

Beyond the speed limit
超过限速
  • DOI:
    10.1038/nmat2909
  • 发表时间:
    2010-11-23
  • 期刊:
  • 影响因子:
    38.500
  • 作者:
    Geoffrey Beach
  • 通讯作者:
    Geoffrey Beach
Growth-Induced Order by Site-Preference in Anisotropic Mixed Rare-Earth Iron Garnet Thin Films
各向异性混合稀土铁石榴石薄膜中按位点偏好生长诱导的有序性

Geoffrey Beach的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Geoffrey Beach', 18)}}的其他基金

Development of a Ferrimagnetic Terahertz Oscillator
亚铁磁太赫兹振荡器的研制
  • 批准号:
    2232830
  • 财政年份:
    2023
  • 资助金额:
    $ 34.8万
  • 项目类别:
    Standard Grant
PFI-TT: Development of a new patterning system for accelerated innovation and advanced manufacturing of microchips
PFI-TT:开发新的图案化系统,以加速微芯片的创新和先进制造
  • 批准号:
    2141118
  • 财政年份:
    2022
  • 资助金额:
    $ 34.8万
  • 项目类别:
    Standard Grant
Electrical switching of magnetic devices by voltage-controlled proton insertion for low-power, high-performance data storage and computing
通过压控质子插入对磁性器件进行电切换,以实现低功耗、高性能数据存储和计算
  • 批准号:
    1808828
  • 财政年份:
    2018
  • 资助金额:
    $ 34.8万
  • 项目类别:
    Standard Grant
MIT Materials Research Science and Engineering Center - Full Proposal
麻省理工学院材料研究科学与工程中心 - 完整提案
  • 批准号:
    1419807
  • 财政年份:
    2014
  • 资助金额:
    $ 34.8万
  • 项目类别:
    Cooperative Agreement
Spin Orbitronics: Interfacial Design of Spintronic Materials and Devices
自旋轨道电子学:自旋电子材料和器件的界面设计
  • 批准号:
    1408172
  • 财政年份:
    2014
  • 资助金额:
    $ 34.8万
  • 项目类别:
    Standard Grant

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
新型Field-SEA多尺度溶剂模型的开发与应用研究
  • 批准号:
    21506066
  • 批准年份:
    2015
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Research on the control of photon-magnon coupling state by strong gate electric field
强栅极电场控制光子-磁振子耦合态的研究
  • 批准号:
    22KJ1956
  • 财政年份:
    2023
  • 资助金额:
    $ 34.8万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Optical-electric field control of localized to non-localized phase transition phenomena
局域到非局域相变现象的光电场控制
  • 批准号:
    23K04568
  • 财政年份:
    2023
  • 资助金额:
    $ 34.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Fabrication of Functional Composite Cellulose Fiber with Nano-Structural Control by Electric Field and Elongational Flow
电场和拉伸流控制纳米结构功能复合纤维素纤维的制备
  • 批准号:
    22H01393
  • 财政年份:
    2022
  • 资助金额:
    $ 34.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Non-invasive electric field sensing by second harmonic generation with self-polarization control
通过自极化控制产生二次谐波进行非侵入式电场传感
  • 批准号:
    22H01462
  • 财政年份:
    2022
  • 资助金额:
    $ 34.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Seizure control by electric field control
通过电场控制进行咬合控制
  • 批准号:
    10641916
  • 财政年份:
    2021
  • 资助金额:
    $ 34.8万
  • 项目类别:
Seizure control by electric field control
通过电场控制进行咬合控制
  • 批准号:
    10365510
  • 财政年份:
    2021
  • 资助金额:
    $ 34.8万
  • 项目类别:
Electric-field control of antiferromagnetic spin configuration via antiferromagnetic/ferromagnetic transition and applications for memory devices
通过反铁磁/铁磁转变对反铁磁自旋配置的电场控制及其在存储器件中的应用
  • 批准号:
    21K14196
  • 财政年份:
    2021
  • 资助金额:
    $ 34.8万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Growth of Heusler-type Weyl semimetal thin films on ferroelectric substrates and electric-field control of topological states
铁电衬底上Heusler型Weyl半金属薄膜的生长及拓扑态的电场控制
  • 批准号:
    20K21002
  • 财政年份:
    2020
  • 资助金额:
    $ 34.8万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Development of novel heat conduction control method on the basis of the clarification of thermal transport modulation by external electric field and charge injection
在阐明外部电场和电荷注入热传输调制的基础上开发新型热传导控制方法
  • 批准号:
    20H02080
  • 财政年份:
    2020
  • 资助金额:
    $ 34.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Chirality control of polyoxometalate by electric field
电场控制多金属氧酸盐的手性
  • 批准号:
    20K20565
  • 财政年份:
    2020
  • 资助金额:
    $ 34.8万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了