Electrical switching of magnetic devices by voltage-controlled proton insertion for low-power, high-performance data storage and computing
通过压控质子插入对磁性器件进行电切换,以实现低功耗、高性能数据存储和计算
基本信息
- 批准号:1808828
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-01 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
As conventional silicon-based electronics approaches fundamental physical limits, new materials and devices are urgently needed to meet the growing demand for low-power, high-performance data storage and processing technologies in today's information-based society. Magnetic materials, in which both the charge and the spin of the electron can be harnessed simultaneously, provide a path to enable a new generation of advanced 'spintronic' devices with capabilities beyond those that can be achieved using the electron charge alone. The ability to electrically gate charge transport was key to the electronics revolution, but at present, no mechanism exists to effectively gate magnetism in materials. This project seeks fundamental understanding and practical application of a new mechanism to control magnetism electrically that can enable an unprecedented level of control with fast response, low gate voltage and power input, and robustness over many cycles. The transformative aspect is the use of protons instead of electrons to mediate changes in magnetic properties in solid materials by injecting them towards and away from a magnetic thin film using a small applied voltage. This new control mechanism could deliver superior functionality to enable future memory, logic, and other spin-based technologies that would have tremendous fundamental, technological, and societal impact. The project provides a fertile training ground for undergraduate and graduate students in key interdisciplinary nanotechnologies, and will include an international collaboration that provides international scientific exposure for the supported graduate student. Educational innovation will be achieved through project-centric curriculum development at the undergraduate level. Outreach and diversity activities will include hosting high school teachers through the National Science Foundation Research Experience for Teachers program and by developing and delivering a 'Magnetism in Action' program at a local elementary school classroom for hands-on explorations in science, technology, engineering, and mathematics (STEM).Technical: The objective of the proposed program is to enable a new means to electrically gate magnetism and spin transport in spintronic devices by exploiting reversible hydrogen insertion in all-solid-state thin-film heterostructures. In ultrathin ferromagnetic films adjacent to a heavy metal like Pt and Pd, broken inversion symmetry and spin-orbit coupling give rise to a wealth of phenomena such as perpendicular anisotropy, chiral and other exchange interactions, and spin-orbit torques. These same metals are well-known hydrogen storage materials that undergo a reversible transition between metallic and metal-hydride phases with correspondingly substantial changes to structural and electronic properties. The transformative aspect of the proposed research is to harness electrochemical water splitting in the ambient atmosphere catalyzed by a rare-earth oxide/noble metal interface, to act as a solid-state proton pump capable of driving H+ ions through the gate oxide and into/out of the heavy-metal adjacent to a ferromagnet. Heterostructures will be designed to examine and optimize low-voltage gating of critical magnetic properties, to assess the reaction and diffusion kinetics, to identify and mitigate device failure modes, and to apply this knowledge to exemplary devices in which spin waves can be electrically gated in dynamic magnonic waveguides and crystals. The proposed research will establish a revolutionary new approach that will enable new devices and spin-based architectures, while providing a powerful knob to explore the origins of some of the most important interactions being studied in nanomagnetism today. The project moreover provides new interdisciplinary insights by combining spintronics with solid-state ionics, two traditionally distinct disciplines, which will lead to synergistic approaches to tackle key fundamental and technological challenges.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着传统的硅基电子器件接近基本的物理极限,迫切需要新的材料和器件来满足当今信息社会对低功耗、高性能数据存储和处理技术日益增长的需求。 磁性材料可以同时利用电子的电荷和自旋,这为新一代先进的“自旋电子”器件提供了一条途径,这些器件的能力超出了仅使用电子电荷所能实现的能力。 电门控电荷传输的能力是电子革命的关键,但目前还不存在有效门控材料磁性的机制。 该项目寻求对一种新机制的基本理解和实际应用,以电气方式控制磁性,这种机制可以实现前所未有的控制水平,具有快速响应,低栅极电压和功率输入以及许多周期的鲁棒性。 变革性的方面是使用质子而不是电子,通过使用小的施加电压将它们朝向和远离磁性薄膜注入来介导固体材料中磁性的变化。 这种新的控制机制可以提供上级功能,以实现未来的存储器,逻辑和其他基于自旋的技术,这些技术将具有巨大的基础,技术和社会影响。 该项目为关键跨学科纳米技术的本科生和研究生提供了一个肥沃的培训基地,并将包括一个国际合作,为支持的研究生提供国际科学接触。 教育创新将通过以项目为中心的本科课程开发来实现。 外联和多样性活动将包括通过国家科学基金会教师研究经验计划接待高中教师,并在当地小学课堂上开发和提供“磁性在行动”计划,以便在科学,技术,工程和数学(STEM)方面进行实践探索。该计划的目的是通过利用全固态薄膜异质结构中的可逆氢插入,实现一种新的方法来电门控自旋电子器件中的磁性和自旋输运。 在与重金属如Pt和Pd相邻的铁磁薄膜中,破缺的反转对称性和自旋轨道耦合引起了丰富的现象,如垂直各向异性,手性和其他交换相互作用,以及自旋轨道扭矩。 这些相同的金属是公知的储氢材料,其在金属相和金属氢化物相之间经历可逆转变,相应地结构和电子性质发生实质性变化。 所提出的研究的变革方面是利用由稀土氧化物/贵金属界面催化的环境大气中的电化学水分解,作为能够驱动H+离子通过栅极氧化物并进入/离开邻近铁磁体的重金属的固态质子泵。 异质结构将被设计为检查和优化关键磁特性的低电压门控,以评估反应和扩散动力学,以确定和减轻设备故障模式,并将此知识应用于示例性设备,其中自旋波可以在动态磁振子波导和晶体中进行电门控。 拟议的研究将建立一种革命性的新方法,使新设备和基于自旋的架构成为可能,同时提供一个强大的旋钮来探索当今纳米磁学研究中一些最重要的相互作用的起源。此外,该项目通过将自旋电子学与固态离子学这两个传统上截然不同的学科相结合,提供了新的跨学科见解,这将导致协同方法来解决关键的基础和技术挑战。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fast Magneto-Ionic Switching of Interface Anisotropy Using Yttria-Stabilized Zirconia Gate Oxide
- DOI:10.1021/acs.nanolett.0c00340
- 发表时间:2020-05-13
- 期刊:
- 影响因子:10.8
- 作者:Lee, Ki-Young;Jo, Sujin;Woo, Seonghoon
- 通讯作者:Woo, Seonghoon
Magnetoionic control of perpendicular exchange bias
- DOI:10.1103/physrevmaterials.5.l061401
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:J. Zehner;D. Wolf;M. Hasan;M. Huang;D. Bono;K. Nielsch;K. Leistner;G. Beach
- 通讯作者:J. Zehner;D. Wolf;M. Hasan;M. Huang;D. Bono;K. Nielsch;K. Leistner;G. Beach
Voltage control of ferrimagnetic order and voltage-assisted writing of ferrimagnetic spin textures
- DOI:10.1038/s41565-021-00940-1
- 发表时间:2021-07-29
- 期刊:
- 影响因子:38.3
- 作者:Huang, Mantao;Hasan, Muhammad Usama;Beach, Geoffrey S. D.
- 通讯作者:Beach, Geoffrey S. D.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Geoffrey Beach其他文献
Beyond the speed limit
超过限速
- DOI:
10.1038/nmat2909 - 发表时间:
2010-11-23 - 期刊:
- 影响因子:38.500
- 作者:
Geoffrey Beach - 通讯作者:
Geoffrey Beach
Growth-Induced Order by Site-Preference in Anisotropic Mixed Rare-Earth Iron Garnet Thin Films
各向异性混合稀土铁石榴石薄膜中按位点偏好生长诱导的有序性
- DOI:
10.1109/intermagshortpapers58606.2023.10228723 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Allison Kaczmarek;Ethan Rosenberg;Yixuan Song;Aubrey Penn;Geoffrey Beach;Caroline Ross - 通讯作者:
Caroline Ross
Geoffrey Beach的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Geoffrey Beach', 18)}}的其他基金
Development of a Ferrimagnetic Terahertz Oscillator
亚铁磁太赫兹振荡器的研制
- 批准号:
2232830 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
PFI-TT: Development of a new patterning system for accelerated innovation and advanced manufacturing of microchips
PFI-TT:开发新的图案化系统,以加速微芯片的创新和先进制造
- 批准号:
2141118 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
MIT Materials Research Science and Engineering Center - Full Proposal
麻省理工学院材料研究科学与工程中心 - 完整提案
- 批准号:
1419807 - 财政年份:2014
- 资助金额:
$ 36万 - 项目类别:
Cooperative Agreement
Spin Orbitronics: Interfacial Design of Spintronic Materials and Devices
自旋轨道电子学:自旋电子材料和器件的界面设计
- 批准号:
1408172 - 财政年份:2014
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Electric Field Control of Spin Dynamics in Metal Spintronic Devices
金属自旋电子器件中自旋动力学的电场控制
- 批准号:
1128439 - 财政年份:2011
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
相似国自然基金
Regime switching模型下衍生产品的套期保值
- 批准号:11126124
- 批准年份:2011
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
一类新Regime-Switching模型及其在金融建模中的应用研究
- 批准号:11061041
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:地区科学基金项目
分数布朗运动环境下金融保险中优化问题的研究
- 批准号:10901086
- 批准年份:2009
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
堆栈型全光缓存研究
- 批准号:60977003
- 批准年份:2009
- 资助金额:35.0 万元
- 项目类别:面上项目
离子束-电子束作用下的TbMnO3阻变效应研究
- 批准号:10975013
- 批准年份:2009
- 资助金额:32.0 万元
- 项目类别:面上项目
相似海外基金
TERASWITCH - Towards low dissipation THz-induced switching of magnetic materials
TERASWITCH - 实现磁性材料的低耗散太赫兹感应开关
- 批准号:
EP/T027916/2 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Research Grant
Non-volatile magnetic memory devices based on field-free spin-orbit torque switching of perpendicularly polarized magnets.
基于垂直极化磁体的无场自旋轨道扭矩切换的非易失性磁存储器件。
- 批准号:
2208057 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Development of Fast Analysis and Design of Magnetic Components for Switching Converter Driving at Several 10MHz to 100MHz
10MHz至100MHz开关转换器驱动磁性元件快速分析与设计的开发
- 批准号:
22K20435 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Domain Dynamics and Ultrafast Switching in Magnetic Weyl Semimetals
磁外尔半金属的域动力学和超快切换
- 批准号:
2213891 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Strain-induced magnetization switching for magnetic single crystal thin film grown on freestanding membrane
独立膜上生长的磁性单晶薄膜的应变感应磁化转变
- 批准号:
22K18894 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
A Compact LHe-Free Fast-Switching-Field MRI Magnet for Ratiometric Molecular Imaging and Novel Contrast Exploration
用于比例分子成像和新颖对比探索的紧凑型无 LHe 快速切换场 MRI 磁体
- 批准号:
10665615 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
A Compact LHe-Free Fast-Switching-Field MRI Magnet for Ratiometric Molecular Imaging and Novel Contrast Exploration
用于比例分子成像和新颖对比探索的紧凑型无 LHe 快速切换场 MRI 磁体
- 批准号:
10433443 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Ultrafast helicity-dependent all-optical switching in hybrid magnetic nanomaterials
混合磁性纳米材料中的超快螺旋依赖全光开关
- 批准号:
EP/V048538/1 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Research Grant
High-resolution mapping of the human brainstem during continence and micturition: noninvasive in vivo 7 Tesla fMRI study
节制和排尿期间人类脑干的高分辨率绘图:无创体内 7 Tesla fMRI 研究
- 批准号:
10330466 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Laser-induced deterministic magnetization switching for next-generation magnetic recording
用于下一代磁记录的激光诱导确定性磁化强度切换
- 批准号:
21K14521 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists