A Truncated Prediction Approach to Control of Time-Delay Systems with Applications to High Speed Rotor/AMB Systems
时滞系统控制的截断预测方法及其在高速转子/AMB系统中的应用
基本信息
- 批准号:1129752
- 负责人:
- 金额:$ 25.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of this award is to develop a truncated prediction approach to control design for time-delay systems with or without magnitude/energy constraints in the control input. In comparison with the classical prediction based approaches, this proposed approach will result in controllers that do not contain distributed terms and will thus entirely avoid the implementation problems associated with the traditional prediction based approaches. It will also provide a powerful tool for the control of constrained time-delay systems which is seldom considered in the literature. Deliverables include a set of powerful tools for various aspects of the analysis and control such systems, including the problems of disturbance rejection and output regulation. An important part of the project is to apply the obtained theoretical results on high speed rotors suspended by active magnetic bearings (AMBs).The design methods developed in this project will help engineers to handle practical systems more effectively. The applications of these methods to the control of a high speed rotor/AMB test rig will enhance our ability to operate compressors in the oil and gas industries more effectively and in deeper seas. Therefore, the successful completion of this project will contribute in a way to alleviate one the most pressing issues our society faces today: the energy crisis. The research will require the involvement of graduate students and undergraduate students, possibly minority and female students, and thus will leverage the funding that NSF can provide for basic research activities to assist in education. The results obtained in this research will be prepared into conference and journal papers for dissemination.
该奖项的目的是开发一种截断预测方法,用于控制输入中有或没有幅度/能量约束的时滞系统的控制设计。与经典的基于预测的方法相比,所提出的方法将导致不包含分布项的控制器,从而完全避免与传统的基于预测的方法相关联的实现问题。它也将为文献中很少考虑的约束时滞系统的控制提供一个有力的工具。可扩展性包括一套强大的工具,用于分析和控制此类系统的各个方面,包括干扰抑制和输出调节问题。本计画的一个重要部分是将所得的理论结果应用于主动磁轴承悬浮的高速转子,本计画所发展的设计方法将有助于工程师更有效地处理实际系统。将这些方法应用于高速转子/AMB试验台的控制,将提高我们在石油和天然气工业中更有效地操作压缩机的能力。因此,该项目的成功完成将有助于缓解我们社会今天面临的最紧迫问题之一:能源危机。这项研究将需要研究生和本科生的参与,可能是少数民族和女学生,因此将利用NSF为基础研究活动提供的资金来协助教育。本研究获得的结果将被准备成会议和期刊论文以供传播。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zongli Lin其他文献
Constrained control of uncertain nonhomogeneous Markovian jump systems
不确定非齐次马尔可夫跳跃系统的约束控制
- DOI:
10.1002/rnc.3774 - 发表时间:
2017-03 - 期刊:
- 影响因子:3.9
- 作者:
Yanyan Yin;Zongli Lin - 通讯作者:
Zongli Lin
Consensus seeking over directed networks with limited information communication
在信息通信有限的定向网络上寻求共识
- DOI:
10.1016/j.automatica.2012.11.041 - 发表时间:
2013-02 - 期刊:
- 影响因子:6.4
- 作者:
Dequan Li;Qipeng Liu;Xiaofang Wang;Zongli Lin - 通讯作者:
Zongli Lin
Distributed Dynamic Event-Triggered Communication Mechanisms for Dynamic Average Consensus
用于动态平均共识的分布式动态事件触发通信机制
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yangyang Qian;Yijing Xie;Zongli Lin;Yan Wan;Y. Shamash - 通讯作者:
Y. Shamash
A grid-based tracker for erratic targets
针对不稳定目标的基于网格的跟踪器
- DOI:
10.1016/j.patcog.2015.05.014 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Qian Sang;Zongli Lin;S. Acton - 通讯作者:
S. Acton
Stability and performance analysis of saturated systems via partitioning of the virtual input space
通过虚拟输入空间的划分进行饱和系统的稳定性和性能分析
- DOI:
10.1016/j.automatica.2014.12.033 - 发表时间:
2015-03 - 期刊:
- 影响因子:6.4
- 作者:
Yuanlong Li;Zongli Lin - 通讯作者:
Zongli Lin
Zongli Lin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zongli Lin', 18)}}的其他基金
State Prediction in the Presence of Input, State and Output Delays: Application to Compressor Surge Control Using Active Magnetic Bearings
存在输入、状态和输出延迟时的状态预测:在使用主动磁力轴承的压缩机喘振控制中的应用
- 批准号:
1462171 - 财政年份:2015
- 资助金额:
$ 25.5万 - 项目类别:
Standard Grant
A Generalized Absolute Stability Approach to Dealing with Saturation Nonlinearities: Analysis, Design and Applications to Magnetic Bearing Systems
处理饱和非线性的广义绝对稳定性方法:磁力轴承系统的分析、设计和应用
- 批准号:
0324329 - 财政年份:2003
- 资助金额:
$ 25.5万 - 项目类别:
Continuing Grant
相似海外基金
Improving Mortality Prediction in People with Cardiovascular Disease: A Random Survival Forests Approach Integrating Frailty Assessment
改善心血管疾病患者的死亡率预测:结合衰弱评估的随机生存森林方法
- 批准号:
495596 - 财政年份:2023
- 资助金额:
$ 25.5万 - 项目类别:
Machine Learning and Reaction Modelling: A Synergistic Approach to Rapid Reactivity Prediction
机器学习和反应建模:快速反应预测的协同方法
- 批准号:
2889828 - 财政年份:2023
- 资助金额:
$ 25.5万 - 项目类别:
Studentship
Advancing synthesis prediction with machine learning - A data driven/mechanistic approach
通过机器学习推进综合预测 - 数据驱动/机械方法
- 批准号:
2886146 - 财政年份:2023
- 资助金额:
$ 25.5万 - 项目类别:
Studentship
Machine Learning Approach for Personalized Prediction of Renal Graft Survival
用于肾移植物存活个性化预测的机器学习方法
- 批准号:
23K17002 - 财政年份:2023
- 资助金额:
$ 25.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Identifying mechanisms and biomarkers of perinatal depression for improving treatment and risk prediction: A translational approach
识别围产期抑郁症的机制和生物标志物以改善治疗和风险预测:转化方法
- 批准号:
491460 - 财政年份:2023
- 资助金额:
$ 25.5万 - 项目类别:
Fellowship Programs
Research on Prediction of Cardiac Disease Outcomes Using Multi-Modal Data Integration Approach Artificial Intelligence
利用多模态数据集成方法人工智能预测心脏病结果的研究
- 批准号:
23K15152 - 财政年份:2023
- 资助金额:
$ 25.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A reinforcement learning approach for de novo metabolite structure prediction from mass spectral data
根据质谱数据从头预测代谢物结构的强化学习方法
- 批准号:
559158-2021 - 财政年份:2022
- 资助金额:
$ 25.5万 - 项目类别:
Postgraduate Scholarships - Doctoral
A new machine learning approach for prediction of personalized screening time and colorectal polyps recurrence based on genomics, clinical, and imaging data
一种新的机器学习方法,用于根据基因组学、临床和影像数据预测个性化筛查时间和结直肠息肉复发
- 批准号:
568028-2022 - 财政年份:2022
- 资助金额:
$ 25.5万 - 项目类别:
Postdoctoral Fellowships
SBIR Phase I: A highly-scalable, rapid, in-season approach to tune a nitrogen model for accurate prediction of a corn crop’s remaining nitrogen need
SBIR 第一阶段:一种高度可扩展、快速的季节性方法,用于调整氮模型,以准确预测玉米作物的剩余氮需求
- 批准号:
2127096 - 财政年份:2022
- 资助金额:
$ 25.5万 - 项目类别:
Standard Grant
Eruption prediction of the volcanoes where precursory phenomena are continuing: petrologic approach of eruption materials.
前兆现象持续存在的火山喷发预测:喷发物质的岩石学方法。
- 批准号:
22K03732 - 财政年份:2022
- 资助金额:
$ 25.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)