State Prediction in the Presence of Input, State and Output Delays: Application to Compressor Surge Control Using Active Magnetic Bearings
存在输入、状态和输出延迟时的状态预测:在使用主动磁力轴承的压缩机喘振控制中的应用
基本信息
- 批准号:1462171
- 负责人:
- 金额:$ 27.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-15 至 2019-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of this research project is to develop new design methods for controlling engineering systems in the presence of time delays arising in the inputs, outputs, and states. These methods will help engineers alleviate the adverse effects of delays on stability and performance. Multistage centrifugal compressors are one of the most widespread types of industrial equipment, and consume significant amounts of energy. They are used to drive natural gas pipelines and are essential components for building heating, ventilation, and air conditioning systems. Application of the project results to surge instability will enable higher efficiency operation of these compressors, thereby lowering operating costs and reducing overall energy use. Through the Rotating Machinery and Controls (ROMAC) consortium at the University of Virginia, the research team will interact with engineers from major compressor manufacturers, to formulate and disseminate solutions to major technical challenges faced by the industry.Conventional predictor feedback in time-delay systems leads to noncausal control laws when the input delays are larger than the state delays. Initial investigations indicate that it is possible to construct a causal state predictor even for this case. The fundamental idea is to partition the prediction time into sections that are each shorter than the maximum state delay, and carry out the prediction recursively over the prediction time. The resulting state predictor is causal, but infinite dimensional. The thrust of this project is to devise methods to safely implement the infinite-dimensional predictor. The results are expected to lead to powerful new tools for control of systems subject to simultaneous input, state and output delays. An integrated part of the project is to apply the theoretical results to the control of surge instability in multistage centrifugal compressors by use of active magnetic bearings.
该研究项目的目标是开发新的设计方法,用于在存在输入、输出和状态时滞的情况下控制工程系统。这些方法将帮助工程师减轻延迟对稳定性和性能的不利影响。多级离心式压缩机是应用最广泛的工业设备之一,耗能大。它们用于驱动天然气管道,是建筑供暖、通风和空调系统的基本组件。将项目成果应用于喘振不稳定问题,将使这些压缩机能够更高效地运行,从而降低运行成本和减少整体能源消耗。通过弗吉尼亚大学的旋转机械与控制(ROMAC)联盟,研究团队将与主要压缩机制造商的工程师互动,以制定和传播针对该行业面临的主要技术挑战的解决方案。当输入延迟大于状态延迟时,时滞系统中的传统预测器反馈会导致非因果控制律。初步调查表明,即使对于这种情况,也有可能构建一个因果状态预测器。其基本思想是将预测时间划分为每个都比最大状态延迟短的部分,并在预测时间内递归地执行预测。由此产生的状态预测器是因果的,但是无限维的。这个项目的主旨是设计方法来安全地实现无限维预报器。预计这一结果将带来强大的新工具,用于控制同时存在输入、状态和输出延迟的系统。该项目的一个完整部分是将理论结果应用于利用主动磁轴承控制多级离心式压缩机的喘振不稳定性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zongli Lin其他文献
Constrained control of uncertain nonhomogeneous Markovian jump systems
不确定非齐次马尔可夫跳跃系统的约束控制
- DOI:
10.1002/rnc.3774 - 发表时间:
2017-03 - 期刊:
- 影响因子:3.9
- 作者:
Yanyan Yin;Zongli Lin - 通讯作者:
Zongli Lin
Consensus seeking over directed networks with limited information communication
在信息通信有限的定向网络上寻求共识
- DOI:
10.1016/j.automatica.2012.11.041 - 发表时间:
2013-02 - 期刊:
- 影响因子:6.4
- 作者:
Dequan Li;Qipeng Liu;Xiaofang Wang;Zongli Lin - 通讯作者:
Zongli Lin
Distributed Dynamic Event-Triggered Communication Mechanisms for Dynamic Average Consensus
用于动态平均共识的分布式动态事件触发通信机制
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yangyang Qian;Yijing Xie;Zongli Lin;Yan Wan;Y. Shamash - 通讯作者:
Y. Shamash
A grid-based tracker for erratic targets
针对不稳定目标的基于网格的跟踪器
- DOI:
10.1016/j.patcog.2015.05.014 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Qian Sang;Zongli Lin;S. Acton - 通讯作者:
S. Acton
Stability and performance analysis of saturated systems via partitioning of the virtual input space
通过虚拟输入空间的划分进行饱和系统的稳定性和性能分析
- DOI:
10.1016/j.automatica.2014.12.033 - 发表时间:
2015-03 - 期刊:
- 影响因子:6.4
- 作者:
Yuanlong Li;Zongli Lin - 通讯作者:
Zongli Lin
Zongli Lin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zongli Lin', 18)}}的其他基金
A Truncated Prediction Approach to Control of Time-Delay Systems with Applications to High Speed Rotor/AMB Systems
时滞系统控制的截断预测方法及其在高速转子/AMB系统中的应用
- 批准号:
1129752 - 财政年份:2011
- 资助金额:
$ 27.35万 - 项目类别:
Standard Grant
A Generalized Absolute Stability Approach to Dealing with Saturation Nonlinearities: Analysis, Design and Applications to Magnetic Bearing Systems
处理饱和非线性的广义绝对稳定性方法:磁力轴承系统的分析、设计和应用
- 批准号:
0324329 - 财政年份:2003
- 资助金额:
$ 27.35万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:
2403312 - 财政年份:2024
- 资助金额:
$ 27.35万 - 项目类别:
Standard Grant
ALPACA - Advancing the Long-range Prediction, Attribution, and forecast Calibration of AMOC and its climate impacts
APACA - 推进 AMOC 及其气候影响的长期预测、归因和预报校准
- 批准号:
2406511 - 财政年份:2024
- 资助金额:
$ 27.35万 - 项目类别:
Standard Grant
EAGER: Integrating Pathological Image and Biomedical Text Data for Clinical Outcome Prediction
EAGER:整合病理图像和生物医学文本数据进行临床结果预测
- 批准号:
2412195 - 财政年份:2024
- 资助金额:
$ 27.35万 - 项目类别:
Standard Grant
Audiphon (Auditory models for automatic prediction of phonation)
Audiphon(用于自动预测发声的听觉模型)
- 批准号:
24K03872 - 财政年份:2024
- 资助金额:
$ 27.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
NSF Convergence Accelerator Track K: COMPASS: Comprehensive Prediction, Assessment, and Equitable Solutions for Storm-Induced Contamination of Freshwater Systems
NSF 融合加速器轨道 K:COMPASS:风暴引起的淡水系统污染的综合预测、评估和公平解决方案
- 批准号:
2344357 - 财政年份:2024
- 资助金额:
$ 27.35万 - 项目类别:
Standard Grant
A robust ensemble Kalman filter to innovate short-range severe weather prediction
强大的集成卡尔曼滤波器创新短程恶劣天气预测
- 批准号:
24K07131 - 财政年份:2024
- 资助金额:
$ 27.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Data-driven prediction of fatigue crack nucleation in directionally-solidified Ni-based superalloys
定向凝固镍基高温合金疲劳裂纹形核的数据驱动预测
- 批准号:
24K07230 - 财政年份:2024
- 资助金额:
$ 27.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
I(eye)-SCREEN: A real-world AI-based infrastructure for screening and prediction of progression in age-related macular degeneration (AMD) providing accessible shared care
I(eye)-SCREEN:基于人工智能的现实基础设施,用于筛查和预测年龄相关性黄斑变性 (AMD) 的进展,提供可及的共享护理
- 批准号:
10102692 - 财政年份:2024
- 资助金额:
$ 27.35万 - 项目类别:
EU-Funded
Prediction, Monitoring and Personalized Recommendations for Prevention and Relief of Dementia and Frailty
预防和缓解痴呆症和衰弱的预测、监测和个性化建议
- 批准号:
10103541 - 财政年份:2024
- 资助金额:
$ 27.35万 - 项目类别:
EU-Funded
Synergising Process-Based and Machine Learning Models for Accurate and Explainable Crop Yield Prediction along with Environmental Impact Assessment
协同基于流程和机器学习模型,实现准确且可解释的作物产量预测以及环境影响评估
- 批准号:
BB/Y513763/1 - 财政年份:2024
- 资助金额:
$ 27.35万 - 项目类别:
Research Grant