A Generalized Absolute Stability Approach to Dealing with Saturation Nonlinearities: Analysis, Design and Applications to Magnetic Bearing Systems

处理饱和非线性的广义绝对稳定性方法:磁力轴承系统的分析、设计和应用

基本信息

  • 批准号:
    0324329
  • 负责人:
  • 金额:
    $ 35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-09-01 至 2007-08-31
  • 项目状态:
    已结题

项目摘要

Saturation nonlinearities are ubiquitous in engineering systems. In control systems, every physical actuator is subject to maximum and minimum saturation limits. In between these maximum and minimum limits, the input-output characteristic of a physical actuator is often neither precisely linear nor exactly known. Thus, in the analysis and design of many high performance control systems, it is inadequate to model the actuator characteristic by a standard saturation function. A straightforward approach to accounting for the nonlinearities and uncertainties in the actuator characteristic is to formulate the analysis and control design problem as the classical absolute stability problem, where the actuator characteristic is assumed to be within a linear sector. Such an approach to dealing with actuator nonlinearities leads to severe conservativeness as the two straight lines, the boundaries ofa linear sector, cannot tightly bound the actuator characteristic.The proposed research will develop a generalized absolute stability approach to the analysis and control design of linear systems in the presence of actuator nonlinearities. In comparison with the classical absolute stability theory, the main innovation of this proposed approach is that it allows the actuator nonlinearities to reside in between two nonlinear curves, rather than two straight lines. The initial investigation by the PIs has shown that the proposed approach drastically improves the results that can be obtained by the classical absolute stability theory. The proposed research is expected to lead to a set of powerful tools for various aspects of analysis and control design, including the assessment of closed-loop performance under a given feedback law and the design of feedback laws for stabilization, disturbance rejection and output regulation. An integrated part of the project is to experimentally verify the obtained theoretical results on some magnetic bearing/suspension systems in our laboratory. The proposed research will have a strong societal impact by advancing magnetically suspended flywheel energy storage technology and by providing efficient control design for magnetically suspended artificial heart pumps. Other broader impacts of this research include the development of closerinteraction among the control theory, the magnetic bearings, and the medicalscience research communities and curriculum enhancement at the graduate and undergraduate levels.
饱和非线性在工程系统中普遍存在。在控制系统中,每个物理执行器都受到最大和最小饱和限制。在这些最大和最小限制之间,物理执行器的输入输出特性通常既不是精确线性的,也不是精确已知的。因此,在许多高性能控制系统的分析和设计中,用标准的饱和函数来模拟执行器的特性是不够的。考虑致动器特性中的非线性和不确定性的一种直接方法是将分析和控制设计问题表述为经典的绝对稳定性问题,其中假设致动器特性在线性扇区内。这种处理执行器非线性的方法会导致严重的保守性,因为两条直线,即线性扇形的边界,不能紧密地约束执行器的特性。提出的研究将发展一种广义的绝对稳定性方法来分析和控制线性系统在执行器非线性的存在。与经典的绝对稳定性理论相比,该方法的主要创新之处在于它允许执行器非线性驻留在两条非线性曲线之间,而不是两条直线之间。pi的初步研究表明,所提出的方法大大改善了经典绝对稳定性理论所能得到的结果。所提出的研究有望为分析和控制设计的各个方面提供一套强大的工具,包括在给定反馈律下评估闭环性能以及设计用于稳定,干扰抑制和输出调节的反馈律。项目的一个组成部分是在我们实验室的一些磁轴承/悬浮系统上实验验证所获得的理论结果。该研究将通过推进磁悬浮飞轮储能技术和为磁悬浮人工心脏泵提供有效的控制设计而产生强大的社会影响。这项研究的其他更广泛的影响包括控制理论、磁轴承和医学科学研究界之间更密切的互动的发展,以及研究生和本科生水平的课程改进。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zongli Lin其他文献

Constrained control of uncertain nonhomogeneous Markovian jump systems
不确定非齐次马尔可夫跳跃系统的约束控制
Consensus seeking over directed networks with limited information communication
在信息通信有限的定向网络上寻求共识
  • DOI:
    10.1016/j.automatica.2012.11.041
  • 发表时间:
    2013-02
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Dequan Li;Qipeng Liu;Xiaofang Wang;Zongli Lin
  • 通讯作者:
    Zongli Lin
A grid-based tracker for erratic targets
针对不稳定目标的基于网格的跟踪器
  • DOI:
    10.1016/j.patcog.2015.05.014
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qian Sang;Zongli Lin;S. Acton
  • 通讯作者:
    S. Acton
Stability and performance analysis of saturated systems via partitioning of the virtual input space
通过虚拟输入空间的划分进行饱和系统的稳定性和性能分析
  • DOI:
    10.1016/j.automatica.2014.12.033
  • 发表时间:
    2015-03
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Yuanlong Li;Zongli Lin
  • 通讯作者:
    Zongli Lin
Distributed Dynamic Event-Triggered Communication Mechanisms for Dynamic Average Consensus
用于动态平均共识的分布式动态事件触发通信机制

Zongli Lin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zongli Lin', 18)}}的其他基金

State Prediction in the Presence of Input, State and Output Delays: Application to Compressor Surge Control Using Active Magnetic Bearings
存在输入、状态和输出延迟时的状态预测:在使用主动磁力轴承的压缩机喘振控制中的应用
  • 批准号:
    1462171
  • 财政年份:
    2015
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
A Truncated Prediction Approach to Control of Time-Delay Systems with Applications to High Speed Rotor/AMB Systems
时滞系统控制的截断预测方法及其在高速转子/AMB系统中的应用
  • 批准号:
    1129752
  • 财政年份:
    2011
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant

相似海外基金

MicroPI: A micromagnetic approach to absolute palaeointensity determinations
MicroPI:绝对古强度测定的微磁方法
  • 批准号:
    NE/Z000068/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Research Grant
SBIR Phase II: Absolute protein quantitation in in vitro diagnostics for gut inflammation
SBIR II 期:肠道炎症体外诊断中的绝对蛋白质定量
  • 批准号:
    2242174
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Cooperative Agreement
Computability and the absolute Galois group of the rational numbers
可计算性和有理数的绝对伽罗瓦群
  • 批准号:
    2348891
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Rapid detection of environmental RNA and absolute quantification using internal strand RNA
使用内链 RNA 快速检测环境 RNA 并进行绝对定量
  • 批准号:
    22KJ0945
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Towards an absolute chronology of the outer Solar System
外太阳系的绝对年表
  • 批准号:
    22KJ1286
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
How Bright is the Radio Sky? A 310 MHz Absolute Map
无线电天空有多亮?
  • 批准号:
    2307198
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Combining Absolute Quantitative Cross-Linking Mass Spectrometry and Molecular Modeling for Probing PROTAC-Mediated Ternary Complex Structures
结合绝对定量交联质谱和分子建模来探测 PROTAC 介导的三元复杂结构
  • 批准号:
    10572720
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
Absolute binding free energies for virtual screening: A novel implementation of quantum mechanics/molecular mechanics (QM/MM) for FEP that allows substantial sampling and a significant quantum region
用于虚拟筛选的绝对结合自由能:用于 FEP 的量子力学/分子力学 (QM/MM) 的新颖实现,允许大量采样和重要的量子区域
  • 批准号:
    10759829
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
Development of absolute evaluation method for attacking skills using game performance data in soccer
利用足球比赛表现数据开发进攻技术绝对评价方法
  • 批准号:
    23K16708
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
H2: Absolute zero-carbon propulsion systems
H2:绝对零碳推进系统
  • 批准号:
    EP/W014815/1
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了