Novel Computational Methods for Solving Random Eigenvalue Problems

解决随机特征值问题的新颖计算方法

基本信息

  • 批准号:
    1130147
  • 负责人:
  • 金额:
    $ 28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

The research objective of this award is to develop innovative computational methods for solving random eigenvalue problems commonly encountered in modeling and simulation of high-dimensional stochastic dynamic systems. The proposed effort will involve: (1) a new polynomial dimensional decomposition (PDD) method for predicting the statistical moments and probability distributions of random eigensolutions; (2) a solid theoretical basis by quantifying approximation errors from the PDD and polynomial chaos expansion (PCE) methods; and (3) new multiplicative PDD, hybridization, and respective error analyses. The new PDD method will challenge or disrupt existing computational thinking, specifically by addressing highly nonlinear input-output transformations, large number of random variables, and arbitrarily large uncertainty of random input. Therefore, a long-standing stochastic problem associated with the curse of dimensionality will be alleviated to some degree, with positive ramifications in engineering and sciences. Deliverables include development of fast and reliable stochastic methods and algorithms, generation of modeling and simulation tools, documentation of research results, engineering student education, and hands-on experience for K-12 students.If successful, the results of this research will be applicable to a broad range of industrial applications, such as civil, automotive, and aerospace infrastructure. Potential applications include analysis and design of civil structures; noise-vibration-harshness and crashworthiness of ground vehicle systems; and fatigue durability of aerospace structures. Beyond engineering, potential applications include nuclear physics, number theory, computational biology, among others, where random eigenvalue analysis plays a vital role. The transfer of knowledge created by this award will take place through organization of dynamics-related symposia, peer-reviewed journal publications, presentations at major conferences, software development, and student education. Educational goals include graduate student recruitment from an underrepresented minority group, implementation of software tools to upgrade existing courses at The University of Iowa, and active participation in Iowa?s Project Lead the Way program for middle- and high-school students.
该奖项的研究目标是开发创新的计算方法,用于解决高维随机动态系统建模和仿真中常见的随机特征值问题。所提出的努力将包括:(1)一个新的多项式维数分解(PDD)的方法来预测随机本征解的统计矩和概率分布;(2)一个坚实的理论基础,量化近似误差的PDD和多项式混沌展开(PCE)的方法;和(3)新的乘法PDD,杂交,和各自的错误分析。新的PDD方法将挑战或破坏现有的计算思维,特别是通过解决高度非线性的输入-输出转换,大量的随机变量和随机输入的任意大的不确定性。因此,一个长期存在的随机问题与维数灾难将在一定程度上得到缓解,在工程和科学的积极影响。这些成果包括开发快速可靠的随机方法和算法、生成建模和仿真工具、记录研究结果、工程专业学生教育以及K-12学生的实践经验。如果成功,这项研究的结果将适用于广泛的工业应用,如民用、汽车和航空航天基础设施。潜在的应用包括民用结构的分析和设计;地面车辆系统的噪声-振动-粗糙度和耐撞性;以及航空航天结构的疲劳耐久性。除了工程,潜在的应用包括核物理,数论,计算生物学等,其中随机本征值分析起着至关重要的作用。该奖项所创造的知识转移将通过组织与动力学相关的研讨会、同行评审的期刊出版物、在重大会议上的演讲、软件开发和学生教育来进行。 教育目标包括从代表性不足的少数群体中招收研究生,实施软件工具来升级爱荷华州大学的现有课程,以及积极参与爱荷华州的活动。的项目带路计划,为初中和高中学生。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sharif Rahman其他文献

Frequency of COVID-19 Infection in Patients with Sudden Loss of Smell
嗅觉突然丧失患者感染 COVID-19 的频率
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0.1
  • 作者:
    Md Harun Ar Rashid Talukder;Sharif Rahman;A. Taous;Md. Abul Hasnat Joarder
  • 通讯作者:
    Md. Abul Hasnat Joarder
Stochastic multiscale fracture analysis of three-dimensional functionally graded composites
  • DOI:
    10.1016/j.engfracmech.2010.09.006
  • 发表时间:
    2011-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Sharif Rahman;Arindam Chakraborty
  • 通讯作者:
    Arindam Chakraborty
Higher-order moments of spline chaos expansion
  • DOI:
    10.1016/j.probengmech.2024.103666
  • 发表时间:
    2024-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Sharif Rahman
  • 通讯作者:
    Sharif Rahman

Sharif Rahman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sharif Rahman', 18)}}的其他基金

Novel Computational Methods for Design Under Uncertainty with Arbitrary Dependent Probability Distributions
具有任意相关概率分布的不确定性设计的新颖计算方法
  • 批准号:
    2317172
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
High-Dimensional Stochastic Design Optimization by Spline Dimensional Decomposition
通过样条维分解进行高维随机设计优化
  • 批准号:
    1933114
  • 财政年份:
    2019
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
CDS&E: Stochastic Isogeometric Analysis by Hierarchical B-Spline Sparse Grids
CDS
  • 批准号:
    1607398
  • 财政年份:
    2016
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Stochastic Optimization for Design under Uncertainty with Dependent Probability Measures
具有相关概率测量的不确定性下设计的随机优化
  • 批准号:
    1462385
  • 财政年份:
    2015
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Reliability-Based Design Optimization of Large-Scale Complex Systems
大型复杂系统基于可靠性的设计优化
  • 批准号:
    0969044
  • 财政年份:
    2010
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
A New Decomposition Method for Solving Stochastic Eigenvalue Problems in Computational Dynamics
求解计算动力学中随机特征值问题的新分解方法
  • 批准号:
    0653279
  • 财政年份:
    2007
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Fatigue Durability and Reliability of Functionally Graded Materials
功能梯度材料的疲劳耐久性和可靠性
  • 批准号:
    0409463
  • 财政年份:
    2004
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Development of New Dimension-Reduction Methods for Reliability, Simulation, and Design of Complex Engineering Systems
开发复杂工程系统可靠性、仿真和设计的新降维方法
  • 批准号:
    0355487
  • 财政年份:
    2004
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
Probabilistic Simulation of Fracture by Meshless Methods
无网格方法的断裂概率模拟
  • 批准号:
    9900196
  • 财政年份:
    1999
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
CAREER: Stochastic Fracture Mechanics for Nonlinear Structures
职业:非线性结构的随机断裂力学
  • 批准号:
    9733058
  • 财政年份:
    1998
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Novel Computational Methods for Microbiome Data Analysis in Longitudinal Study
纵向研究中微生物组数据分析的新计算方法
  • 批准号:
    10660234
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
Novel Computational Methods for Design Under Uncertainty with Arbitrary Dependent Probability Distributions
具有任意相关概率分布的不确定性设计的新颖计算方法
  • 批准号:
    2317172
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Generation of single cell multi-omics computational methods for biological insights and novel deconvolution techniques for bulk omics data
生成用于生物学见解的单细胞多组学计算方法和用于批量组学数据的新型反卷积技术
  • 批准号:
    2764861
  • 财政年份:
    2022
  • 资助金额:
    $ 28万
  • 项目类别:
    Studentship
Generation of single cell multi omics computational methods for biological insights and novel deconvolution techniques for bulk omics data
生成用于生物学见解的单细胞多组学计算方法和用于批量组学数据的新型反卷积技术
  • 批准号:
    BB/X511389/1
  • 财政年份:
    2022
  • 资助金额:
    $ 28万
  • 项目类别:
    Training Grant
Novel methods for integrative computational biology
综合计算生物学的新方法
  • 批准号:
    RGPIN-2018-05757
  • 财政年份:
    2022
  • 资助金额:
    $ 28万
  • 项目类别:
    Discovery Grants Program - Individual
Novel domain-specific languages and compiler optimization methods for computational biology
计算生物学的新颖的特定领域语言和编译器优化方法
  • 批准号:
    RGPIN-2019-04973
  • 财政年份:
    2022
  • 资助金额:
    $ 28万
  • 项目类别:
    Discovery Grants Program - Individual
Designing and synthesising new classes of phosphatase inhibitor using novel computational methods
使用新颖的计算方法设计和合成新型磷酸酶抑制剂
  • 批准号:
    2627865
  • 财政年份:
    2021
  • 资助金额:
    $ 28万
  • 项目类别:
    Studentship
Novel domain-specific languages and compiler optimization methods for computational biology
计算生物学的新颖的特定领域语言和编译器优化方法
  • 批准号:
    RGPIN-2019-04973
  • 财政年份:
    2021
  • 资助金额:
    $ 28万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Computational design of sustainable hydrogenation systems via a novel combination of data science, optimization, and ab initio methods
职业:通过数据科学、优化和从头算方法的新颖组合进行可持续加氢系统的计算设计
  • 批准号:
    2045550
  • 财政年份:
    2021
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
Novel methods for integrative computational biology
综合计算生物学的新方法
  • 批准号:
    RGPIN-2018-05757
  • 财政年份:
    2021
  • 资助金额:
    $ 28万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了