Development of New Dimension-Reduction Methods for Reliability, Simulation, and Design of Complex Engineering Systems

开发复杂工程系统可靠性、仿真和设计的新降维方法

基本信息

  • 批准号:
    0355487
  • 负责人:
  • 金额:
    $ 21.51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-07-15 至 2008-06-30
  • 项目状态:
    已结题

项目摘要

The objective of this research project is to develop new computational methods for uncertainty propagation, reliability analysis, and design optimization of complex engineering systems. The proposed effort will be based on: (1) new dimension-reduction methods for calculating second-moment characteristics of random response; (2) new dimension-reduction and moment-based stochastic methods for reliability analysis; and (3) new algorithms for reliability-based/robust design optimization of structural and mechanical systems. The proposed methods are novel and will be able to address highly nonlinear input-output transformations; unlimited number of random variables or processes; and arbitrarily large uncertainty of input, yet will predict both response moments and reliability accurately. Potential engineering applications include ground vehicle design for durability; fatigue and fracture design of aerospace structures; and design of microelectronics packaging systems. From a fundamental point of view, the dimension-reduction methods will provide an accurate and efficient solution to a general multi-dimensional integral over an arbitrary region. Hence, many problems in basic and applied sciences, which involve uncertainty and/or require evaluation of such integrals, will be solved by the methods developed in this project. The transfer of knowledge created by this project will take place through continued collaboration with industries; organization of symposia on reliability and design in ASME conferences; peer-reviewed journal publications; presentations and publications at major conferences and institutions; and student education. The educational goals comprise recruitment of a female Ph. D. student from underrepresented minority; implementation of software tools from this project in upgrading design and reliability courses; and authoring a comprehensive textbook.
该研究项目的目标是为复杂工程系统的不确定性传播、可靠性分析和设计优化开发新的计算方法。 建议的工作将基于:(1)新的降维方法计算二阶矩特性的随机响应;(2)新的降维和基于矩的随机方法的可靠性分析;和(3)新的算法的可靠性为基础的/稳健的设计优化的结构和机械系统。 所提出的方法是新颖的,将能够解决高度非线性的输入输出变换;无限数量的随机变量或过程;和任意大的输入不确定性,但将准确地预测响应时刻和可靠性。 潜在的工程应用包括地面车辆的耐久性设计;航空航天结构的疲劳和断裂设计;以及微电子封装系统的设计。 从基本的观点来看,降维方法将为任意区域上的一般多维积分提供精确而有效的解。 因此,在基础科学和应用科学,这涉及不确定性和/或需要评估这样的积分,许多问题将解决的方法在这个项目中开发。 该项目创造的知识转移将通过以下方式进行:与行业的持续合作;在ASME会议上组织关于可靠性和设计的研讨会;同行评审的期刊出版物;在主要会议和机构上的演讲和出版物;以及学生教育。 教育目标包括招收一名女博士。来自代表性不足的少数族裔的学生;实施该项目的软件工具来升级设计和可靠性课程;并编写一本全面的教科书。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sharif Rahman其他文献

Frequency of COVID-19 Infection in Patients with Sudden Loss of Smell
嗅觉突然丧失患者感染 COVID-19 的频率
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0.1
  • 作者:
    Md Harun Ar Rashid Talukder;Sharif Rahman;A. Taous;Md. Abul Hasnat Joarder
  • 通讯作者:
    Md. Abul Hasnat Joarder
Stochastic multiscale fracture analysis of three-dimensional functionally graded composites
  • DOI:
    10.1016/j.engfracmech.2010.09.006
  • 发表时间:
    2011-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Sharif Rahman;Arindam Chakraborty
  • 通讯作者:
    Arindam Chakraborty
Higher-order moments of spline chaos expansion
  • DOI:
    10.1016/j.probengmech.2024.103666
  • 发表时间:
    2024-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Sharif Rahman
  • 通讯作者:
    Sharif Rahman

Sharif Rahman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sharif Rahman', 18)}}的其他基金

Novel Computational Methods for Design Under Uncertainty with Arbitrary Dependent Probability Distributions
具有任意相关概率分布的不确定性设计的新颖计算方法
  • 批准号:
    2317172
  • 财政年份:
    2023
  • 资助金额:
    $ 21.51万
  • 项目类别:
    Standard Grant
High-Dimensional Stochastic Design Optimization by Spline Dimensional Decomposition
通过样条维分解进行高维随机设计优化
  • 批准号:
    1933114
  • 财政年份:
    2019
  • 资助金额:
    $ 21.51万
  • 项目类别:
    Standard Grant
CDS&E: Stochastic Isogeometric Analysis by Hierarchical B-Spline Sparse Grids
CDS
  • 批准号:
    1607398
  • 财政年份:
    2016
  • 资助金额:
    $ 21.51万
  • 项目类别:
    Standard Grant
Stochastic Optimization for Design under Uncertainty with Dependent Probability Measures
具有相关概率测量的不确定性下设计的随机优化
  • 批准号:
    1462385
  • 财政年份:
    2015
  • 资助金额:
    $ 21.51万
  • 项目类别:
    Standard Grant
Novel Computational Methods for Solving Random Eigenvalue Problems
解决随机特征值问题的新颖计算方法
  • 批准号:
    1130147
  • 财政年份:
    2011
  • 资助金额:
    $ 21.51万
  • 项目类别:
    Standard Grant
Reliability-Based Design Optimization of Large-Scale Complex Systems
大型复杂系统基于可靠性的设计优化
  • 批准号:
    0969044
  • 财政年份:
    2010
  • 资助金额:
    $ 21.51万
  • 项目类别:
    Standard Grant
A New Decomposition Method for Solving Stochastic Eigenvalue Problems in Computational Dynamics
求解计算动力学中随机特征值问题的新分解方法
  • 批准号:
    0653279
  • 财政年份:
    2007
  • 资助金额:
    $ 21.51万
  • 项目类别:
    Standard Grant
Fatigue Durability and Reliability of Functionally Graded Materials
功能梯度材料的疲劳耐久性和可靠性
  • 批准号:
    0409463
  • 财政年份:
    2004
  • 资助金额:
    $ 21.51万
  • 项目类别:
    Standard Grant
Probabilistic Simulation of Fracture by Meshless Methods
无网格方法的断裂概率模拟
  • 批准号:
    9900196
  • 财政年份:
    1999
  • 资助金额:
    $ 21.51万
  • 项目类别:
    Continuing Grant
CAREER: Stochastic Fracture Mechanics for Nonlinear Structures
职业:非线性结构的随机断裂力学
  • 批准号:
    9733058
  • 财政年份:
    1998
  • 资助金额:
    $ 21.51万
  • 项目类别:
    Standard Grant

相似海外基金

Exploring cognition with multiple rewards: A new dimension into the cognitive ecology of pollination
探索多重奖励的认知:授粉认知生态学的新维度
  • 批准号:
    2028613
  • 财政年份:
    2021
  • 资助金额:
    $ 21.51万
  • 项目类别:
    Standard Grant
Exploring a New Dimension of Microbial Secondary Metabolism
探索微生物次生代谢的新维度
  • 批准号:
    10298182
  • 财政年份:
    2021
  • 资助金额:
    $ 21.51万
  • 项目类别:
Exploring a New Dimension of Microbial Secondary Metabolism
探索微生物次生代谢的新维度
  • 批准号:
    10623226
  • 财政年份:
    2021
  • 资助金额:
    $ 21.51万
  • 项目类别:
Exploring a New Dimension of Microbial Secondary Metabolism
探索微生物次生代谢的新维度
  • 批准号:
    10443867
  • 财政年份:
    2021
  • 资助金额:
    $ 21.51万
  • 项目类别:
Construction of new phase-parameter space correspondence for complex dynamics in dimension two
二维复杂动力学新相参空间对应的构建
  • 批准号:
    20H01809
  • 财政年份:
    2020
  • 资助金额:
    $ 21.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Integrated Cancer Modeling: A New Dimension
综合癌症建模:新维度
  • 批准号:
    9812144
  • 财政年份:
    2019
  • 资助金额:
    $ 21.51万
  • 项目类别:
A new dimension of functionality for high surface-area-to volume materials
高表面积体积材料的新功能维度
  • 批准号:
    DP190103507
  • 财政年份:
    2019
  • 资助金额:
    $ 21.51万
  • 项目类别:
    Discovery Projects
Functional Microdomains in the Heart's Pacemaker: A New Dimension of Cardiac Remodeling
心脏起搏器中的功能微域:心脏重塑的新维度
  • 批准号:
    10365986
  • 财政年份:
    2018
  • 资助金额:
    $ 21.51万
  • 项目类别:
Exploring Contacts in a New Era: Spin-Orbit Coupling and Dimension Crossover
探索新时代的接触:自旋轨道耦合与维度交叉
  • 批准号:
    1806796
  • 财政年份:
    2018
  • 资助金额:
    $ 21.51万
  • 项目类别:
    Continuing Grant
Functional Microdomains in the Heart's Pacemaker: A New Dimension of Cardiac Remodeling
心脏起搏器中的功能微域:心脏重塑的新维度
  • 批准号:
    9883641
  • 财政年份:
    2018
  • 资助金额:
    $ 21.51万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了