Collaborative Research: Magnetic Directed Alignment of Injectable Neural Stem Cell Scaffold for Regeneration After Spinal Cord Injury

合作研究:可注射神经干细胞支架的磁性定向排列用于脊髓损伤后的再生

基本信息

  • 批准号:
    1134119
  • 负责人:
  • 金额:
    $ 26.33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

1134119 / 1134449Liu / CaoThe research objective of this award is to develop a novel technique to fabricate injectable, alignable, and bioactive scaffold that uses neural stem cells (NSCs) as building blocks for spinal cord injury (SCI) repair. This work capitalizes on the ability to manipulate superparamagnetic iron oxide nanoparticles (SPIONs) with magnetic field remotely and noninvasively. In this approach, the NSCs are labeled with nanoengineered cationic magnetoliposomes (CMLs) which encapsulate numerous SPIONs, and can be injected into the injured spinal cord in colloidal suspensions. Upon the application of a magnetic field, magnetically labeled NSCs will spontaneously self-assemble into chain/column lattices and align along a virtual axis that is defined by the field flux lines, thereby forming a scaffold to guide the directional regrowth of axons. Neurotrophic factors stored in the bilayer of the CMLs can be released by radio frequency electromagnetic triggering to promote NSC survival and axonal growth. If successful, this research will transform state-of-the-art of biological scaffold fabrication in tissue engineering, when directional guidance is desired for cellular growth and expansion, and enhance the therapeutic strategies for challenging issues of experimental spinal cord injury and neurodegenerative diseases. This work will also help to greatly expand the use of SPIONs in general clinical applications by changing their role from passive tracer (e.g., magnetic resonance imaging (MRI) contrast agents) to active enabler of biological processes. The technology developed can be conveniently translated to clinical treatments of a diverse group of nervous system diseases, such as traumatic brain injury (TBI) and peripheral nerve disorders. It will benefit hundreds of thousands of Americans who are have severely limited mobility or paralyzed incurring from these diseases. Additionally, this work investigates the magnetic directed self-assembly of soft biological particles under histological conditions, and the findings will advance fundamental understanding of aggregation kinetics and phase separation in dipolar colloids, which constitutes the basis of a variety of micro/nanofluidic applications. Through the proposed project, an integrated interdisciplinary research and education program will be established which creates vast opportunities for underrepresented groups, by actively recruiting qualified minority students for both undergraduate and graduate studies and by engaging in K-12 teacher/student outreach activities.
1134119 /1134449 Liu/Cao该奖项的研究目标是开发一种新的技术来制造可注射的,可移植的和生物活性的支架,该支架使用神经干细胞(NSCs)作为脊髓损伤(SCI)修复的构建块。 这项工作利用了利用磁场远程和非侵入性地操纵超顺磁性氧化铁纳米颗粒(SPION)的能力。 在这种方法中,NSC用纳米工程阳离子磁性脂质体(CML)标记,其封装许多SPION,并且可以在胶体悬浮液中注射到受伤的脊髓中。 在施加磁场时,磁性标记的NSC将自发地自组装成链/柱晶格,并沿由场通量线限定的虚拟轴沿着,从而形成支架以引导轴突的定向再生长。 储存在CML双层中的神经营养因子可以通过射频电磁触发释放,以促进NSC存活和轴突生长。 如果成功,这项研究将改变组织工程中生物支架制造的最新技术,当细胞生长和扩张需要定向指导时,并增强实验性脊髓损伤和神经退行性疾病的挑战性问题的治疗策略。 这项工作还将有助于通过改变SPION的作用,从被动示踪剂(例如,磁共振成像(MRI)造影剂)到生物过程的活性使能剂。 开发的技术可以方便地转化为各种神经系统疾病的临床治疗,如创伤性脑损伤(TBI)和周围神经疾病。 它将使数十万因这些疾病而行动严重受限或瘫痪的美国人受益。 此外,这项工作研究了软生物颗粒在组织学条件下的磁性定向自组装,研究结果将促进对偶极胶体中聚集动力学和相分离的基本理解,这构成了各种微/纳流体应用的基础。 通过拟议的项目,将建立一个综合的跨学科研究和教育计划,为代表性不足的群体创造巨大的机会,积极招募合格的少数民族学生进行本科和研究生学习,并参与K-12教师/学生外联活动。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dong Liu其他文献

Will entrepreneurial intention directly lead to entrepreneurial behaviour?: a study based on the intermediary effect of entrepreneurial implementation plan
创业意向会直接导致创业行为吗?:基于创业实施计划中介效应的研究
  • DOI:
    10.2991/febm-17.2017.12
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    10.5
  • 作者:
    Man Hou;Dong Liu;Aizhen Wu;Zhang Yan
  • 通讯作者:
    Zhang Yan
Does pay raise decrease temporary agency workers’ voluntary turnover over time in China? Understanding the moderating role of demographics
随着时间的推移,加薪是否会减少中国临时工的自愿流动?
The PA‑interacting host protein nucleolin acts as an antiviral factor during highly pathogenic H5N1 avian infuenza virus infection
PA-相互作用宿主蛋白核仁素在高致病性 H5N1 禽流感病毒感染过程中充当抗病毒因子
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Zhao Gao;Jiao Hu;Xiaoquan Wang;Qian Yan;Yanyan Liang;Chunxi Ma;Dong Liu;Kaituo Liu;Xiaoli Hao;Min Gu;Xiaowen Liu;Xin‑an Jiao;Xiufan Liu
  • 通讯作者:
    Xiufan Liu
Regioselective Photochemical Cycloaddition Reactions of Diolefinic Ligands in Coordination Polymers
配位聚合物中二烯配体的区域选择性光化学环加成反应
  • DOI:
    10.1002/asia.201900646
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Ni-Ya Li;Dong Liu;Jian-Ping Lang
  • 通讯作者:
    Jian-Ping Lang
Spatial pattern and heterogeneity of soil moisture along a transect in a small catchment on the Loess Plateau
黄土高原小流域样线土壤水分空间格局及异质性
  • DOI:
    10.1016/j.jhydrol.2017.05.026
  • 发表时间:
    2017-07
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Yang Yang;Yanxing Dou;Dong Liu;Shaoshan An
  • 通讯作者:
    Shaoshan An

Dong Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dong Liu', 18)}}的其他基金

LBNF/DUNE Target Phase 2
LBNF/DUNE 目标第 2 阶段
  • 批准号:
    ST/W001683/2
  • 财政年份:
    2024
  • 资助金额:
    $ 26.33万
  • 项目类别:
    Research Grant
Excellence in Research: Bioengineered extracellular vesicles from stem cells and macrophages act synergistically in angiogenesis
卓越的研究:来自干细胞和巨噬细胞的生物工程细胞外囊泡在血管生成中协同作用
  • 批准号:
    2302440
  • 财政年份:
    2023
  • 资助金额:
    $ 26.33万
  • 项目类别:
    Standard Grant
LBNF/DUNE Target Phase 2
LBNF/DUNE 目标第 2 阶段
  • 批准号:
    ST/W001683/1
  • 财政年份:
    2022
  • 资助金额:
    $ 26.33万
  • 项目类别:
    Research Grant
Mechanistic Understanding of the Damage and Fracture in Ceramic-Matrix Composites under Extreme Conditions
极端条件下陶瓷基复合材料损伤和断裂的机理理解
  • 批准号:
    EP/T000368/1
  • 财政年份:
    2020
  • 资助金额:
    $ 26.33万
  • 项目类别:
    Research Grant
Enabling Light-Driven Microfluidics with Laser Streaming
通过激光流实现光驱动微流体
  • 批准号:
    1932734
  • 财政年份:
    2019
  • 资助金额:
    $ 26.33万
  • 项目类别:
    Standard Grant
An innovative, multi-scale, real-time approach to the understanding of deformation and fracture in irradiated nuclear reactor core graphites
一种了解辐照核反应堆堆芯石墨变形和断裂的创新、多尺度、实时方法
  • 批准号:
    EP/N004493/2
  • 财政年份:
    2018
  • 资助金额:
    $ 26.33万
  • 项目类别:
    Fellowship
An innovative, multi-scale, real-time approach to the understanding of deformation and fracture in irradiated nuclear reactor core graphites
一种了解辐照核反应堆堆芯石墨变形和断裂的创新、多尺度、实时方法
  • 批准号:
    EP/N004493/1
  • 财政年份:
    2016
  • 资助金额:
    $ 26.33万
  • 项目类别:
    Fellowship
Creating Tunable Adaptive Boiling Heat Transfer Surfaces with Electrowetting
使用电润湿创建可调自适应沸腾传热表面
  • 批准号:
    1236606
  • 财政年份:
    2012
  • 资助金额:
    $ 26.33万
  • 项目类别:
    Standard Grant
BRIGE: Study of Colloidal Electrohydrodynamics for Dielectrophoresis-Directed Fluidic Assembly of Nanostructures
BRIGE:介电泳引导纳米结构流体组装的胶体电流体动力学研究
  • 批准号:
    0927340
  • 财政年份:
    2009
  • 资助金额:
    $ 26.33万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
合作研究:用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
  • 批准号:
    2343606
  • 财政年份:
    2024
  • 资助金额:
    $ 26.33万
  • 项目类别:
    Standard Grant
Collaborative Research: Magnetic Clustering using Novel Poly(amino acid) Corrals to Advance Magnetic Particle Imaging
合作研究:利用新型聚氨基酸畜栏进行磁聚类以推进磁粒子成像
  • 批准号:
    2305404
  • 财政年份:
    2023
  • 资助金额:
    $ 26.33万
  • 项目类别:
    Standard Grant
Collaborative Research: Organized Nanochannel Materials from Biomolecular Magnetic Organic Frameworks-
合作研究:从生物分子磁性有机框架组织纳米通道材料-
  • 批准号:
    2303580
  • 财政年份:
    2023
  • 资助金额:
    $ 26.33万
  • 项目类别:
    Standard Grant
Collaborative Research: Magnetic Clustering using Novel Poly(amino acid) Corrals to Advance Magnetic Particle Imaging
合作研究:利用新型聚氨基酸畜栏进行磁聚类以推进磁粒子成像
  • 批准号:
    2305402
  • 财政年份:
    2023
  • 资助金额:
    $ 26.33万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: CRYO: Engineering Atomically Thin Magnetic Materials for Efficient Solid-State Cooling at Cryogenic Temperatures
EAGER/合作研究:CRYO:工程原子薄磁性材料,可在低温下进行高效固态冷却
  • 批准号:
    2233592
  • 财政年份:
    2023
  • 资助金额:
    $ 26.33万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: CRYO: Engineering Atomically Thin Magnetic Materials for Efficient Solid-State Cooling at Cryogenic Temperatures
EAGER/合作研究:CRYO:工程原子薄磁性材料,可在低温下进行高效固态冷却
  • 批准号:
    2233375
  • 财政年份:
    2023
  • 资助金额:
    $ 26.33万
  • 项目类别:
    Standard Grant
Collaborative Research: Reconfigurable Intelligent Electromagnetic Surface Using Magnetic Shape Memory Polymers
合作研究:使用磁性形状记忆聚合物的可重构智能电磁表面
  • 批准号:
    2300156
  • 财政年份:
    2023
  • 资助金额:
    $ 26.33万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: The history of the Earth's magnetic field strength over the last five million years: Filling in the southern hemisphere gap
合作研究:NSFGEO-NERC:过去五百万年地球磁场强度的历史:填补南半球的空白
  • 批准号:
    2245629
  • 财政年份:
    2023
  • 资助金额:
    $ 26.33万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Discovery of novel magnetic materials through pseudospin control
合作研究:DMREF:通过赝自旋控制发现新型磁性材料
  • 批准号:
    2323857
  • 财政年份:
    2023
  • 资助金额:
    $ 26.33万
  • 项目类别:
    Standard Grant
Collaborative Research: A Comprehensive Theoretical Study of Cosmological Magnetic Fields and Turbulence: from the Early to Late Time Universe
合作研究:宇宙磁场和湍流的综合理论研究:从宇宙早期到晚期
  • 批准号:
    2307699
  • 财政年份:
    2023
  • 资助金额:
    $ 26.33万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了