Collaborative Research: Magnetic Directed Alignment of Injectable Neural Stem Cell Scaffold for Regeneration After Spinal Cord Injury

合作研究:可注射神经干细胞支架的磁性定向排列用于脊髓损伤后的再生

基本信息

项目摘要

1134119 / 1134449Liu / CaoThe research objective of this award is to develop a novel technique to fabricate injectable, alignable, and bioactive scaffold that uses neural stem cells (NSCs) as building blocks for spinal cord injury (SCI) repair. This work capitalizes on the ability to manipulate superparamagnetic iron oxide nanoparticles (SPIONs) with magnetic field remotely and noninvasively. In this approach, the NSCs are labeled with nanoengineered cationic magnetoliposomes (CMLs) which encapsulate numerous SPIONs, and can be injected into the injured spinal cord in colloidal suspensions. Upon the application of a magnetic field, magnetically labeled NSCs will spontaneously self-assemble into chain/column lattices and align along a virtual axis that is defined by the field flux lines, thereby forming a scaffold to guide the directional regrowth of axons. Neurotrophic factors stored in the bilayer of the CMLs can be released by radio frequency electromagnetic triggering to promote NSC survival and axonal growth. If successful, this research will transform state-of-the-art of biological scaffold fabrication in tissue engineering, when directional guidance is desired for cellular growth and expansion, and enhance the therapeutic strategies for challenging issues of experimental spinal cord injury and neurodegenerative diseases. This work will also help to greatly expand the use of SPIONs in general clinical applications by changing their role from passive tracer (e.g., magnetic resonance imaging (MRI) contrast agents) to active enabler of biological processes. The technology developed can be conveniently translated to clinical treatments of a diverse group of nervous system diseases, such as traumatic brain injury (TBI) and peripheral nerve disorders. It will benefit hundreds of thousands of Americans who are have severely limited mobility or paralyzed incurring from these diseases. Additionally, this work investigates the magnetic directed self-assembly of soft biological particles under histological conditions, and the findings will advance fundamental understanding of aggregation kinetics and phase separation in dipolar colloids, which constitutes the basis of a variety of micro/nanofluidic applications. Through the proposed project, an integrated interdisciplinary research and education program will be established which creates vast opportunities for underrepresented groups, by actively recruiting qualified minority students for both undergraduate and graduate studies and by engaging in K-12 teacher/student outreach activities.
1134119/1134449刘/曹该奖项的研究目标是开发一种新技术,利用神经干细胞(NSCs)作为脊髓损伤(SCI)修复的构建块,制造可注射、可对准和具有生物活性的支架。这项工作利用了远程和非侵入性地操纵超顺磁性氧化铁纳米颗粒(SPION)的能力。在这种方法中,神经干细胞被包裹了大量SPION的纳米工程阳离子磁脂质体(CMLS)标记,并以胶体悬浮液的形式注射到损伤的脊髓中。当施加磁场时,磁性标记的神经干细胞将自发地自组装成链状/柱状晶格,并沿着由磁场磁通线定义的虚拟轴排列,从而形成引导轴突定向再生的支架。射频电磁触发可以释放储存在CMLS双层中的神经营养因子,从而促进NSC的存活和轴突生长。如果成功,这项研究将改变组织工程中生物支架制造的最先进水平,当需要定向指导细胞生长和扩张时,并加强对实验性脊髓损伤和神经退行性疾病的挑战性问题的治疗策略。这项工作还将有助于通过将SPION的作用从被动示踪剂(例如磁共振成像(MRI)造影剂)转变为生物过程的主动使能器,从而大大扩大SPION在一般临床应用中的使用。开发的技术可以方便地转化为各种神经系统疾病的临床治疗,如创伤性脑损伤(TBI)和周围神经疾病。它将使数十万因这些疾病而行动严重受限或瘫痪的美国人受益。此外,这项工作研究了在组织学条件下软生物颗粒的磁定向自组装,这些发现将促进对偶极胶体中聚集动力学和相分离的基本理解,这构成了各种微/纳米流体应用的基础。通过拟议的项目,将建立一个综合的跨学科研究和教育方案,通过积极招收合格的少数族裔学生进行本科生和研究生学习以及参与K-12教师/学生外联活动,为代表性不足的群体创造大量机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Qi Cao其他文献

User profiling for CSDN: Keyphrase extraction, user tagging and user growth value prediction
CSDN用户画像:关键词提取、用户标签和用户增长价值预测
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Guoliang Xing;Hao Gao;Qi Cao;Xinyu Yue;Bingbing Xu;Keting Cen;Huawei Shen
  • 通讯作者:
    Huawei Shen
User Profiling for CSDN: Keyphrase Extraction, User Tagging and User Growth Value Prediction: First-place Entry for User Profiling Technology Evaluation Campaign in SMP Cup 2017
CSDN用户画像:关键词提取、用户标签与用户增长价值预测:2017年SMP杯用户画像技术评测第一名
  • DOI:
    10.1162/dint_a_00015
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Guoliang Xing;Hao Gao;Qi Cao;Xinyu Yue;Bingbing Xu;Keting Cen;Huawei Shen
  • 通讯作者:
    Huawei Shen
EXPERIENCES IN PYTHON PROGRAMMING LABORATORY FOR CIVIL ENGINEERING STUDENTS WITH ONLINE COLLABORATIVE PROGRAMMING PLATFORM
土木工程专业学生Python编程实验室在线协作编程平台体验
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qi Cao;Lily Lim;V. Dale;Nathalie Tasler
  • 通讯作者:
    Nathalie Tasler
NiO and CrOx interaction promoting in situ generation of the coordinatively unsaturated Cr–O acid–base for oxygen-lean propane dehydrogenation
NiO和CrOx相互作用促进贫氧丙烷脱氢中配位不饱和Cr-O酸-碱的原位生成
  • DOI:
    10.1039/d2cy01561g
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yu Ren;Xiao Chu;Qi Cao;Zean Xie;Lian Kong;Xiaoqiang Fan;Xia Xiao;Zhen Zhao
  • 通讯作者:
    Zhen Zhao
Experimental Investigation of the Characteristics of Supercritical CO2 during the Venting Process
超临界CO2放空过程特性的实验研究
  • DOI:
    10.1016/j.ijggc.2021.103424
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Qi Cao;Xingqing Yan;Shuai Yu;Jianliang Yu;Shaoyun Chen;Yongchun Zhang;Xiaolu Guo
  • 通讯作者:
    Xiaolu Guo

Qi Cao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
合作研究:用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
  • 批准号:
    2343606
  • 财政年份:
    2024
  • 资助金额:
    $ 14.02万
  • 项目类别:
    Standard Grant
Collaborative Research: Magnetic Clustering using Novel Poly(amino acid) Corrals to Advance Magnetic Particle Imaging
合作研究:利用新型聚氨基酸畜栏进行磁聚类以推进磁粒子成像
  • 批准号:
    2305404
  • 财政年份:
    2023
  • 资助金额:
    $ 14.02万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: CRYO: Engineering Atomically Thin Magnetic Materials for Efficient Solid-State Cooling at Cryogenic Temperatures
EAGER/合作研究:CRYO:工程原子薄磁性材料,可在低温下进行高效固态冷却
  • 批准号:
    2233592
  • 财政年份:
    2023
  • 资助金额:
    $ 14.02万
  • 项目类别:
    Standard Grant
Collaborative Research: Organized Nanochannel Materials from Biomolecular Magnetic Organic Frameworks-
合作研究:从生物分子磁性有机框架组织纳米通道材料-
  • 批准号:
    2303580
  • 财政年份:
    2023
  • 资助金额:
    $ 14.02万
  • 项目类别:
    Standard Grant
Collaborative Research: Magnetic Clustering using Novel Poly(amino acid) Corrals to Advance Magnetic Particle Imaging
合作研究:利用新型聚氨基酸畜栏进行磁聚类以推进磁粒子成像
  • 批准号:
    2305402
  • 财政年份:
    2023
  • 资助金额:
    $ 14.02万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: CRYO: Engineering Atomically Thin Magnetic Materials for Efficient Solid-State Cooling at Cryogenic Temperatures
EAGER/合作研究:CRYO:工程原子薄磁性材料,可在低温下进行高效固态冷却
  • 批准号:
    2233375
  • 财政年份:
    2023
  • 资助金额:
    $ 14.02万
  • 项目类别:
    Standard Grant
Collaborative Research: Reconfigurable Intelligent Electromagnetic Surface Using Magnetic Shape Memory Polymers
合作研究:使用磁性形状记忆聚合物的可重构智能电磁表面
  • 批准号:
    2300156
  • 财政年份:
    2023
  • 资助金额:
    $ 14.02万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: The history of the Earth's magnetic field strength over the last five million years: Filling in the southern hemisphere gap
合作研究:NSFGEO-NERC:过去五百万年地球磁场强度的历史:填补南半球的空白
  • 批准号:
    2245629
  • 财政年份:
    2023
  • 资助金额:
    $ 14.02万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Discovery of novel magnetic materials through pseudospin control
合作研究:DMREF:通过赝自旋控制发现新型磁性材料
  • 批准号:
    2323857
  • 财政年份:
    2023
  • 资助金额:
    $ 14.02万
  • 项目类别:
    Standard Grant
Collaborative Research: A Comprehensive Theoretical Study of Cosmological Magnetic Fields and Turbulence: from the Early to Late Time Universe
合作研究:宇宙磁场和湍流的综合理论研究:从宇宙早期到晚期
  • 批准号:
    2307699
  • 财政年份:
    2023
  • 资助金额:
    $ 14.02万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了