Scaling limit in dispersive equations

色散方程中的标度极限

基本信息

  • 批准号:
    1142293
  • 负责人:
  • 金额:
    $ 13.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-07-01 至 2014-01-31
  • 项目状态:
    已结题

项目摘要

This project aims at developing the study of three fundamental equations from physics. First, stability issues for the 2-fluids Euler-Maxwell equation, which is one of the fundamental equations in plasma physics, are considered. The goal is to prove that, under certain conditions, small perturbations of an equilibrium will not develop shocks, and that, actually, the plasma will get back to equilibrium, even in the absence of dissipation. Such a result would be of great physical and mathematical importance as it is known to be false for the compressible Euler equation in the absence of a self-consistent electromagnetic field. In a second part, a study is made of the Schrodinger equation on a curved background. In this case, many classical tools from the Euclidean theory break down and one expects the appearance of many new phenomena due to the influence of the geometry of the background. In particular, a study will be made of the effect of the growth of the volume on the global existence and global behavior of the solutions to the energy-critical equation. Finally, in a third part, ideas developed before are used to upgrade some known results about the homogeneous fourth-order equation to the more physical inhomogeneous equation. Understanding how a fluid can be stabilized by a self-consistent electromagnetic field in the absence of any friction represents a cross-disciplinary collaboration between pure mathematics, applied mathematics, and physics, with applications in fluid engineering. More specifically, proving that a plasma at rest is stable under small perturbations would be a major physical discovery and would most certainly greatly enhance our ways to control plasma. This is especially fitting since plasma stability is one of the main factor limiting performances in tokamaks. Finally, beyond industrial applications, plasma represents the state of more than 99% of the matter in the universe and any work providing better understanding of this state would be of great importance. Dispersive equations and equations on curved spaces (manifolds) provide a rich area of interaction between various branches of mathematics as well as between different sciences. The study of equations on curved spaces is of interest to geometers, analysts, and number theorists in mathematics, as well as to theoretical physicists working in quantum chaos and general relativity. Fourth-order equations naturally arise in many different branches of physics and mathematics, especially those linked with elasticity and are critical to understand phenomena as diverse as the movement (and possible oscillations and breakdown) of bridges or the structure of blood vessels and the interaction between their membranes and the biofluids.
该项目旨在发展对物理学中三个基本方程的研究。首先,考虑了等离子体物理中的基本方程之一的双流体欧拉-麦克斯韦方程的稳定性问题。我们的目标是证明,在某些条件下,平衡的小扰动不会产生冲击,而且,实际上,即使没有耗散,等离子体也会回到平衡。这样的结果在物理和数学上具有重要意义,因为众所周知,在没有自洽电磁场的情况下,可压缩欧拉方程的结果是错误的。第二部分研究了弯曲背景下的薛定谔方程。在这种情况下,许多经典的工具,从欧几里德理论的故障,人们预计出现许多新的现象,由于影响的几何背景。特别地,将研究体积的增长对能量临界方程解的整体存在性和整体性态的影响。最后,在第三部分中,以前开发的想法是用来升级的齐次四阶方程的一些已知的结果,更物理的非齐次方程。理解流体如何在没有任何摩擦的情况下通过自洽电磁场稳定,代表了纯数学,应用数学和物理学之间的跨学科合作,并在流体工程中应用。更具体地说,证明静止的等离子体在小扰动下是稳定的将是一个重大的物理发现,并且肯定会大大增强我们控制等离子体的方法。这是特别合适的,因为等离子体稳定性是限制托卡马克性能的主要因素之一。最后,除了工业应用之外,等离子体代表了宇宙中99%以上的物质的状态,任何能够更好地理解这种状态的工作都是非常重要的。色散方程和弯曲空间(流形)上的方程为数学的各个分支以及不同科学之间的相互作用提供了丰富的领域。弯曲空间上方程的研究对数学中的几何学家、分析家和数论家,以及研究量子混沌和广义相对论的理论物理学家都很感兴趣。四阶方程自然出现在物理学和数学的许多不同分支中,特别是那些与弹性有关的分支,对于理解桥的运动(以及可能的振荡和破裂)或血管结构及其膜与生物流体之间的相互作用等各种现象至关重要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Benoit Pausader其他文献

On the asymptotic behavior of solutions to the Vlasov-Poisson system
  • DOI:
    https://doi.org/10.1093/imrn/rnab155
  • 发表时间:
  • 期刊:
  • 影响因子:
  • 作者:
    Alexandru Ionescu;Benoit Pausader;Xuecheng Wang;Klaus Widmayer
  • 通讯作者:
    Klaus Widmayer
On the asymptotic behavior of solutions to the Vlasov-Poisson system
关于 Vlasov-Poisson 系统解的渐近行为
Topography Influence on the Lake Equations in Bounded Domains
  • DOI:
    10.1007/s00021-013-0158-x
  • 发表时间:
    2013-12-25
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    Christophe Lacave;Toan T. Nguyen;Benoit Pausader
  • 通讯作者:
    Benoit Pausader
プラズマ物理に現れる Boltzmann の関係式の正当化
等离子体物理学中出现的玻尔兹曼关系的证明
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    鈴木政尋;Emmanuel.Grenier;Yan Guo;Benoit Pausader
  • 通讯作者:
    Benoit Pausader
Global Well-Posedness of the Energy-Critical Defocusing NLS on $${\mathbb{R} \times \mathbb{T}^3}$$
  • DOI:
    10.1007/s00220-012-1474-3
  • 发表时间:
    2012-05-05
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Alexandru D. Ionescu;Benoit Pausader
  • 通讯作者:
    Benoit Pausader

Benoit Pausader的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Benoit Pausader', 18)}}的其他基金

Hamiltonian Methods for Dispersive Fluids and Plasmas
色散流体和等离子体的哈密顿方法
  • 批准号:
    2154162
  • 财政年份:
    2022
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Standard Grant
A Conference in Nonlinear Waves
非线性波会议
  • 批准号:
    1759513
  • 财政年份:
    2018
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Standard Grant
Asymptotics of solutions for dispersive quasilinear problems
色散拟线性问题解的渐近性
  • 批准号:
    1700282
  • 财政年份:
    2017
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Continuing Grant
Scaling limit in dispersive equations
色散方程中的标度极限
  • 批准号:
    1560156
  • 财政年份:
    2015
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Standard Grant
Asymptotic dynamics for nonlinear dispersive systems
非线性色散系统的渐近动力学
  • 批准号:
    1558729
  • 财政年份:
    2015
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Standard Grant
Asymptotic dynamics for nonlinear dispersive systems
非线性色散系统的渐近动力学
  • 批准号:
    1362940
  • 财政年份:
    2014
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Standard Grant
Scaling limit in dispersive equations
色散方程中的标度极限
  • 批准号:
    1415980
  • 财政年份:
    2013
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Standard Grant
Scaling limit in dispersive equations
色散方程中的标度极限
  • 批准号:
    1069243
  • 财政年份:
    2011
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Standard Grant

相似国自然基金

Lienard系统的不变代数曲线、可积性与极限环问题研究
  • 批准号:
    12301200
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
流体湍流运动的相关数学分析
  • 批准号:
    10971174
  • 批准年份:
    2009
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Operating an Optical Atomic Clock Beyond the Laser Coherence and below the Projection Limit
职业:操作超出激光相干性且低于投影极限的光学原子钟
  • 批准号:
    2339487
  • 财政年份:
    2024
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Continuing Grant
OppAttune - Countering Oppositional Political Extremism Through Attuned Dialogue: Track, Attune, Limit
OppAttune - 通过协调对话对抗反对派政治极端主义:跟踪、协调、限制
  • 批准号:
    10071909
  • 财政年份:
    2023
  • 资助金额:
    $ 13.72万
  • 项目类别:
    EU-Funded
Exploring the Function to Show the Limit of Log-space Computation Models
探索显示对数空间计算模型极限的函数
  • 批准号:
    23K10981
  • 财政年份:
    2023
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Engineering T cells to overcome inhibitory receptor signals that limit the efficacy of adoptive cell therapy against ovarian cancer
改造 T 细胞以克服抑制性受体信号,这些信号限制了过继性细胞疗法对卵巢癌的疗效
  • 批准号:
    10526155
  • 财政年份:
    2023
  • 资助金额:
    $ 13.72万
  • 项目类别:
Limit Theorems and Structural Properties of Stochastic Models
随机模型的极限定理和结构性质
  • 批准号:
    2889380
  • 财政年份:
    2023
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Studentship
Designing agricultural landscapes to limit zoonotic disease risk in The Gambia
设计农业景观以限制冈比亚人畜共患疾病风险
  • 批准号:
    2889428
  • 财政年份:
    2023
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Studentship
GWMODELS. Next-generation models of gravitational-wave sources: harnessing the small-mass-ratio limit
GW模型。
  • 批准号:
    EP/Y008251/1
  • 财政年份:
    2023
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Research Grant
A study of the factors contributing to young carers' well-being, and an examination of the care limit point using sleep as an indicator.
研究影响年轻护理人员福祉的因素,并以睡眠为指标检查护理极限点。
  • 批准号:
    23K12643
  • 财政年份:
    2023
  • 资助金额:
    $ 13.72万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Targeting host lipid metabolism to limit tissue damage in necrotizing fasciitis
靶向宿主脂质代谢以限制坏死性筋膜炎的组织损伤
  • 批准号:
    10639904
  • 财政年份:
    2023
  • 资助金额:
    $ 13.72万
  • 项目类别:
An RNA Nanosensor for the Diagnosis of Antibiotic Resistance in M. Tuberculosis
用于诊断结核分枝杆菌抗生素耐药性的 RNA 纳米传感器
  • 批准号:
    10670613
  • 财政年份:
    2023
  • 资助金额:
    $ 13.72万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了