EAGER: Decision Support System for Reasoning with Preferences

EAGER:带有偏好的推理决策支持系统

基本信息

  • 批准号:
    1143734
  • 负责人:
  • 金额:
    $ 11.14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-08-01 至 2013-07-31
  • 项目状态:
    已结题

项目摘要

Automated decision support systems help users make informed and intelligent choices over a set of alternatives, taking into account user preferences and trade-offs among multiple system attributes. In the software engineering domain decision support systems are used to help in evaluating alternative design, technical and managerial choices in terms of quantitative preferences and trade-offs. Preferences over alternatives are evaluated either by directly soliciting from the stakeholders a measure of the perceived utility/value of each attribute, or by quantifying such utility/value based on past experience and expertise. In most practical settings, however, preferences over attributes cannot all be quantified. On the other hand, considering preferences only qualitatively (specifying them as simple relative orderings between alternatives) is also not practical. To overcome these limitations, the proposed research focuses on developing a new paradigm for decision support systems, where preferences are specified both in qualitative and quantitative terms.The main thrust of this work will be to: (a) develop robust formalisms for representing and reasoning with quantitative and qualitative preferences in an unified fashion, (b) investigate application-domain specific extensions to the formalisms, and (c) identify implementation strategies for practical application of the decision support system as a preference analyzer. The anticipated results will help realize application-specific robust decision support systems in multiple domains, including product-line engineering, safety-critical system development, and goal-oriented requirements engineering, by enabling improved automated reasoning about preferences. This work will contribute to research-based training of a postdoctoral scholar and a graduate student in techniques that cut across software engineering, formal methods and artificial intelligence. Research results will be disseminated through publications in journals and conferences.
自动化决策支持系统帮助用户在一组备选方案中做出明智和智能的选择,同时考虑到用户的偏好和多个系统属性之间的权衡。在软件工程领域,决策支持系统被用来帮助评估替代设计,技术和管理选择的定量偏好和权衡。对备选方案的偏好进行评估的方法是,直接向利益相关者征求对每个属性的感知效用/价值的衡量,或者根据过去的经验和专业知识量化这种效用/价值。然而,在大多数实际情况下,对属性的偏好不能全部量化。另一方面,只定性地考虑偏好(将它们指定为选项之间的简单相对排序)也是不切实际的。为了克服这些局限性,拟议的研究集中于为决策支持系统开发一种新的模式,在这种模式中,偏好在定性和定量方面都被指定。这项工作的主要目的是:(a)开发用于以统一的方式用定量和定性偏好进行表示和推理的鲁棒形式体系,(B)研究对形式体系的应用领域特定扩展,以及(c)识别用于将决策支持系统作为偏好分析器的实际应用的实现策略。预期的结果将有助于实现特定于应用程序的强大的决策支持系统在多个领域,包括产品线工程,安全关键系统的开发,和面向目标的需求工程,使改进的自动推理的偏好。 这项工作将有助于对博士后学者和研究生进行跨软件工程,正式方法和人工智能技术的研究培训。研究成果将通过在期刊和会议上发表的出版物传播。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Samik Basu其他文献

SoC Design Approach Using Convertibility Verification
使用可转换性验证的 SoC 设计方法
Quotient-based control synthesis for partially observed non-deterministic plants with mu-calculus specifications
基于商的控制合成,用于具有 mu 微积分规范的部分观察的非确定性植物
Preclinical specificity & activity of a fully human 41BB-expressing anti-CD19 CART- therapy for treatment-resistant autoimmune disease
  • DOI:
    10.1016/j.omtm.2024.101267
  • 发表时间:
    2024-06-13
  • 期刊:
  • 影响因子:
  • 作者:
    Binghao J. Peng;Andrea Alvarado;Hangameh Cassim;Soprina Guarneri;Steven Wong;Jonathan Willis;Julia SantaMaria;Ashley Martynchuk;Victoria Stratton;Darshil Patel;Chien-Chung Chen;Yan Li;Gwendolyn K. Binder;Rebecca Dryer-Minnerly;Jinmin Lee;Samik Basu
  • 通讯作者:
    Samik Basu
Automata-Based Verification of Security Requirements of Composite Web Services
基于自动机的复合Web服务安全要求验证
Compositional Analysis for Verification of Parameterized Systems
用于验证参数化系统的成分分析

Samik Basu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Samik Basu', 18)}}的其他基金

Collaborative Research: RI: III: SHF: Small: Multi-Stakeholder Decision Making: Qualitative Preference Languages, Interactive Reasoning, and Explanation
协作研究:RI:III:SHF:小型:多利益相关者决策:定性偏好语言、交互式推理和解释
  • 批准号:
    2225823
  • 财政年份:
    2022
  • 资助金额:
    $ 11.14万
  • 项目类别:
    Standard Grant
A Model Checking based Framework for Analyzing Information-Propagation over Networks
基于模型检查的网络信息传播分析框架
  • 批准号:
    1555780
  • 财政年份:
    2015
  • 资助金额:
    $ 11.14万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Formal Analysis of Distributed Interactions
SHF:小型:协作研究:分布式交互的形式分析
  • 批准号:
    1116836
  • 财政年份:
    2011
  • 资助金额:
    $ 11.14万
  • 项目类别:
    Standard Grant
Interactive and Verifiable Composition of Web Services To Satisfy End-User Goals
交互式且可验证的 Web 服务组合以满足最终用户目标
  • 批准号:
    0702758
  • 财政年份:
    2007
  • 资助金额:
    $ 11.14万
  • 项目类别:
    Standard Grant
Collaborative Research: Learning Classifiers From Autonomous, Semantically Heterogeneous, Distributed Data
协作研究:从自治、语义异构、分布式数据中学习分类器
  • 批准号:
    0711356
  • 财政年份:
    2007
  • 资助金额:
    $ 11.14万
  • 项目类别:
    Continuing Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

C-NEWTRAL: smart CompreheNsive training to mainstrEam neW approaches for climaTe-neutRal cities through citizen engAgement and decision-making support
C-NEWTRAL:智能综合培训,通过公民参与和决策支持将气候中和城市的新方法纳入主流
  • 批准号:
    EP/Y032640/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.14万
  • 项目类别:
    Research Grant
CAREER: Personalized Maternal Care Decision Support System for Underserved Populations
职业:针对服务不足人群的个性化孕产妇护理决策支持系统
  • 批准号:
    2339992
  • 财政年份:
    2024
  • 资助金额:
    $ 11.14万
  • 项目类别:
    Continuing Grant
Decision support for climate-adapted bushfire risk mitigation
气候适应型丛林火灾风险缓解的决策支持
  • 批准号:
    IM240100046
  • 财政年份:
    2024
  • 资助金额:
    $ 11.14万
  • 项目类别:
    Mid-Career Industry Fellowships
Optimising disease surveillance to support decision-making
优化疾病监测以支持决策
  • 批准号:
    DP240102286
  • 财政年份:
    2024
  • 资助金额:
    $ 11.14万
  • 项目类别:
    Discovery Projects
NSF Convergence Accelerator Track K: Prototyping decision support and monitoring tools for equitable management of salt contamination of water supplies in tidal rivers
NSF 融合加速器轨道 K:为潮汐河供水盐污染的公平管理制定决策支持和监测工具原型
  • 批准号:
    2344042
  • 财政年份:
    2024
  • 资助金额:
    $ 11.14万
  • 项目类别:
    Standard Grant
Enabling net zero retrofit: using AI to generate new data driven insights and support better decision making
实现净零改造:使用人工智能生成新的数据驱动的见解并支持更好的决策
  • 批准号:
    10114530
  • 财政年份:
    2024
  • 资助金额:
    $ 11.14万
  • 项目类别:
    SME Support
CAREER: A Cyberinfrastructure Enabled Hybrid Spatial Decision Support System for Improving Coastal Resilience to Flood Risks
职业:网络基础设施支持的混合空间决策支持系统,可提高沿海地区对洪水风险的抵御能力
  • 批准号:
    2339174
  • 财政年份:
    2024
  • 资助金额:
    $ 11.14万
  • 项目类别:
    Standard Grant
Hybrid Human-AI Decision Support for Enhanced Human Empowerment in Dynamic Situations
人类与人工智能混合决策支持,增强动态情况下的人类赋权
  • 批准号:
    10087361
  • 财政年份:
    2023
  • 资助金额:
    $ 11.14万
  • 项目类别:
    EU-Funded
Integrated modelling of impacts of urban policies to support urban decision making
城市政策影响的综合建模以支持城市决策
  • 批准号:
    2880840
  • 财政年份:
    2023
  • 资助金额:
    $ 11.14万
  • 项目类别:
    Studentship
Clinical Decision Support System for Early Detection of Cognitive Decline Using Electronic Health Records and Deep Learning
利用电子健康记录和深度学习早期检测认知衰退的临床决策支持系统
  • 批准号:
    10603902
  • 财政年份:
    2023
  • 资助金额:
    $ 11.14万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了