CAREER: Estimation Methods for Image Registration
职业:图像配准的估计方法
基本信息
- 批准号:1148870
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-04-01 至 2018-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One of the most central operations in biomedical image analysis is image alignment: image registration. Substantial efforts over the last decades have produced sophisticated registration approaches for applications ranging from microscopy imaging at the nanometer scale to organ-scale imaging. However, neither the underlying assumptions regarding transformation models have been substantially challenged nor have practical methods to quantify uncertainties for deformable registration results been developed. For example, the existing methods are not appropriately designed for many inter-subject registrations or for registrations involving pathologies which are core requirements for many imaging studies. The goal of this research program is to devise advanced estimation methods for image registration, motivated from a dynamical systems point of view which (1) improve estimation of image deformations, (2) improve image similarity measures to account for image changes (such as tissue growth or degeneration), (3) model subject-specific deformations and population-based deformations jointly, (4) allow for the estimationof registration uncertainties, (5) provide appropriate validation strategies, and (6) to present the methods in an intuitive way understandable for the non-expert. Better image registration methods will improve image analysis results and hence will help clinical studies and ultimately patient care. Application areas include the study of traumatic brain injury, radiation treatment planning, assessment of tumor progression or population studies of osteoarthritis, normal brain development, Alzheimer?s or Huntington?s disease, to name but a few. We will focus on neuroimaging and the capturing of lung motions to highlight distinct characteristics of image registration problems.Intellectual Merit The proposed research will significantly advance the state-of-the art, because it will provide much needed ways of using domain knowledge when formulating estimation problems in image registration. The hypothesis is that by adding such information, estimations of space deformations will be improved, hence improving the quality of the analysis results which critically depend on image registration. In particular, the developed methods will address the highly relevant problems of how to deal with images subject to a pathology, how to perform population-based analysis while capturing data-trends, and how to assess estimation uncertainty in registration. The research will have immediate impact on current imaging studies and will form the basis for future applications.Broader Impact While the research will focus on applications in neuroimaging and lung motion analysis, the developed methods will be generally applicable to any image analysis problem requiring an estimate of spatial correspondence ranging from biology, to animation, to object tracking, and to neuroimaging. In particular, since the methods will explicitly address changes on the subject level (including changes caused by pathology or aging) and the population level, they will lead to better estimates of disease progression, will be able to provide patient-specific information, and are expected to improve results for population-based imaging studies (for example for clinical drug testing). To allow others to create customized image analysis solutions all developed methods will be made available to the community in open-source form.1
生物医学图像分析中最核心的操作之一是图像对齐:图像配准。在过去的几十年里,大量的努力已经产生了复杂的配准方法,应用范围从纳米尺度的显微成像到器官尺度的成像。然而,关于转换模型的基本假设既没有受到实质性的挑战,也没有实际的方法来量化可变形配准结果的不确定性。例如,现有方法不适合许多学科间注册或涉及病理的注册,而病理是许多成像研究的核心要求。本研究计划的目标是设计先进的图像配准估计方法,从动态系统的角度出发,(1)改进图像变形的估计,(2)改进图像相似度量,以考虑图像变化(如组织生长或退化),(3)联合建模特定对象的变形和基于群体的变形,(4)允许估计配准不确定性,(5)提供适当的验证策略,(6)以非专家可以理解的直观方式呈现方法。更好的图像配准方法将改善图像分析结果,从而有助于临床研究和最终的患者护理。应用领域包括创伤性脑损伤研究、放射治疗计划、肿瘤进展评估或骨关节炎人群研究、正常脑发育、阿尔茨海默病?还是亨廷顿?S疾病,仅举几例。我们将专注于神经成像和肺部运动的捕捉,以突出图像配准问题的独特特征。本研究将为图像配准中估计问题的制定提供急需的利用领域知识的方法。我们的假设是,通过添加这些信息,空间变形的估计将得到改善,从而提高分析结果的质量,而分析结果严重依赖于图像配准。特别是,开发的方法将解决如何处理病理图像,如何在捕获数据趋势时执行基于人口的分析,以及如何评估注册中的估计不确定性等高度相关的问题。这项研究将对当前的成像研究产生直接影响,并将为未来的应用奠定基础。更广泛的影响虽然研究将集中在神经成像和肺运动分析方面的应用,但所开发的方法将普遍适用于任何需要估计空间对应的图像分析问题,从生物学到动画,到目标跟踪和神经成像。特别是,由于这些方法将明确地处理受试者水平(包括病理或衰老引起的变化)和人群水平的变化,它们将导致更好地估计疾病进展,将能够提供患者特定信息,并有望改善基于人群的成像研究(例如临床药物测试)的结果。为了允许其他人创建定制的图像分析解决方案,所有开发的方法都将以开源的形式提供给社区
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marc Niethammer其他文献
Dynamic level sets for visual tracking
- DOI:
10.1109/cdc.2003.1272383 - 发表时间:
2003-12 - 期刊:
- 影响因子:0
- 作者:
Marc Niethammer - 通讯作者:
Marc Niethammer
uniGradICON: A Foundation Model for Medical Image Registration
uniGradICON:医学图像配准的基础模型
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Lin Tian;Hastings Greer;R. Kwitt;François;R. Estépar;Sylvain Bouix;R. Rushmore;Marc Niethammer - 通讯作者:
Marc Niethammer
Marc Niethammer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marc Niethammer', 18)}}的其他基金
Dynamic Network Analysis: Analyzing the Chronnectome
动态网络分析:分析时间组
- 批准号:
1610762 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Optimal Control for the Analysis of Image Sequences
图像序列分析的最优控制
- 批准号:
0925875 - 财政年份:2009
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似海外基金
Partitioning-Based Learning Methods for Treatment Effect Estimation and Inference
基于分区的治疗效果估计和推理学习方法
- 批准号:
2241575 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Deepening and Expanding Research for Efficient Methods of Function Estimation in High Dimensional Statistical Analysis
高维统计分析中高效函数估计方法的深化和拓展研究
- 批准号:
23H03353 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Bayesian Methods for Sample Size Re-estimation
样本量重新估计的贝叶斯方法
- 批准号:
2884699 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Studentship
Development and application of weighted adjacency matrix estimation methods based on multivariate data
基于多元数据的加权邻接矩阵估计方法的开发与应用
- 批准号:
23K01377 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of cell lineage tracing methods using parameter estimation of diffusion Wright-Fisher models
使用扩散 Wright-Fisher 模型参数估计开发细胞谱系追踪方法
- 批准号:
23K11299 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New Development of Nonparametric and Semiparametric Estimation Methods in Economics, Finance and Insurance
经济、金融和保险领域非参数和半参数估计方法的新进展
- 批准号:
23K01340 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
IMR: MM-1C: Enabling Continual Passive Estimation of Performance of Internet Transfers: Online Measurement and Classification Methods
IMR:MM-1C:实现互联网传输性能的持续被动估计:在线测量和分类方法
- 批准号:
2319511 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
AMPS: Scalable Methods for Real-time Estimation of Power Systems under Uncertainty
AMPS:不确定性下电力系统实时估计的可扩展方法
- 批准号:
2229495 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Development of estimation methods for subsurface structures based on the deepened understanding of strain seismograms recorded with DAS
基于对DAS记录的应变地震图的加深理解,开发地下结构的估计方法
- 批准号:
23K03521 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Applying causal inference methods to improve estimation of the real-world benefits and harms of lung cancer screening
应用因果推理方法来改进对肺癌筛查的现实益处和危害的估计
- 批准号:
10737187 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别: