Optimal Control for the Analysis of Image Sequences
图像序列分析的最优控制
基本信息
- 批准号:0925875
- 负责人:
- 金额:$ 25.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0925875-NiethammerThe research will focus on an optimal control approach for the analysis of dynamically changing image sequences, by treating image evolution as a dynamical system. We will develop methods for longitudinal, cross-sectional, and random designs. Specifically, we will explore (1) the dynamic modeling of time-varying image data, (2) their optimal interpolation, (3) their optimal approximation and smoothing, (4) their optimal filtering, (5) as well as image regression, (6) image extrapolation, and (7) efficient solution approaches based on optimal control theory.Intellectual Merit While the type of methods we will develop are already very advanced for example for scalar-valued data, the theory and methodology is much less developed, but of equal importance, for the case of time-varying images, which we will focus on. Several novel methods for the analysis of time-varying images will be explored and developed within the proposed research. They have general applicability. The research will have immediate impact on current imaging studies and will form the basis for future applications.Broader Impact The developed methods will have broad applicability, from natural image tracking, to video processing and medical image analysis. Example uses will range from the analysis of microscopy images to monitor spatio-temporal phenomena in individual cells, to the study of structural brain changes by magnetic resonance imaging. In the context of biomedical imaging, the techniques developed will ultimately lead to new insight into disease progression through in vivo monitoring, will enable early disease detection, and will also be a cornerstone to facilitate personalized medicine, which needs to account for individual developmental differences and age effects. All developed methods will be made available to the community in open-source form. This will allow for easy adaptations and the creation of customized image analysis solutions.The PI?s pedagogical goal is to reduce the communication barriers between research fields in the following ways: (1) by offering image analysis courses which include student group collaborations with research groups within biology and medicine, (2) by providing opportunities for undergraduates and summer students for hands-on image analysis projects, (3) and by teaching non computer-science majors about the fundamentals and practical aspects of image analysis.
0925875-Niethammer-The研究将集中在动态变化的图像序列分析的最优控制方法,通过处理图像演化作为一个动态系统。我们将开发纵向,横截面和随机设计的方法。具体来说,我们将探索(1)时变图像数据的动态建模,(2)它们的最佳插值,(3)它们的最佳近似和平滑,(4)它们的最佳滤波,(5)以及图像回归,(6)图像外推,以及(7)基于最优控制理论的有效解决方法。智力优点虽然我们将开发的方法类型已经非常先进,以标量数据为例,理论和方法的发展要少得多,但同样重要的是,对于时变图像的情况下,我们将集中在。几种新的方法,分析时变图像将被探索和发展在拟议的研究。它们具有普遍适用性。该研究将对当前的成像研究产生直接影响,并将为未来的应用奠定基础。更广泛的影响所开发的方法将具有广泛的适用性,从自然图像跟踪,视频处理和医学图像分析。示例用途将从分析显微镜图像以监测单个细胞中的时空现象,到通过磁共振成像研究大脑结构变化。在生物医学成像的背景下,开发的技术将最终导致通过体内监测对疾病进展的新见解,将实现早期疾病检测,并且还将成为促进个性化医疗的基石,个性化医疗需要考虑个体发育差异和年龄效应。所有开发的方法都将以开源形式提供给社区。这将允许轻松的调整和创建定制的图像分析解决方案。的教学目标是通过以下方式减少研究领域之间的交流障碍:(1)通过提供图像分析课程,包括与生物学和医学研究小组的学生小组合作,(2)通过为本科生和暑期学生提供动手图像分析项目的机会,(3)对非计算机专业的学生进行图像分析的基础和实践教学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marc Niethammer其他文献
Dynamic level sets for visual tracking
- DOI:
10.1109/cdc.2003.1272383 - 发表时间:
2003-12 - 期刊:
- 影响因子:0
- 作者:
Marc Niethammer - 通讯作者:
Marc Niethammer
uniGradICON: A Foundation Model for Medical Image Registration
uniGradICON:医学图像配准的基础模型
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Lin Tian;Hastings Greer;R. Kwitt;François;R. Estépar;Sylvain Bouix;R. Rushmore;Marc Niethammer - 通讯作者:
Marc Niethammer
Marc Niethammer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marc Niethammer', 18)}}的其他基金
Fast Predictive Medical Image Analysis
快速预测医学图像分析
- 批准号:
1711776 - 财政年份:2017
- 资助金额:
$ 25.4万 - 项目类别:
Standard Grant
Dynamic Network Analysis: Analyzing the Chronnectome
动态网络分析:分析时间组
- 批准号:
1610762 - 财政年份:2016
- 资助金额:
$ 25.4万 - 项目类别:
Standard Grant
CAREER: Estimation Methods for Image Registration
职业:图像配准的估计方法
- 批准号:
1148870 - 财政年份:2012
- 资助金额:
$ 25.4万 - 项目类别:
Continuing Grant
相似国自然基金
Cortical control of internal state in the insular cortex-claustrum region
- 批准号:
- 批准年份:2020
- 资助金额:25 万元
- 项目类别:
相似海外基金
Implementing optimal Control with principla Component Analysis
通过原理成分分析实现最优控制
- 批准号:
2606832 - 财政年份:2021
- 资助金额:
$ 25.4万 - 项目类别:
Studentship
Optimal control problems in mathematical biology: Modelling, analysis and numerics
数学生物学中的最优控制问题:建模、分析和数值
- 批准号:
2435611 - 财政年份:2020
- 资助金额:
$ 25.4万 - 项目类别:
Studentship
Elucidation of the lipid oxidation mechanisms and their optimal control leading to a healthy- and food-based society of the future through the analysis of lipid hydroperoxides isomers
通过分析脂质氢过氧化物异构体,阐明脂质氧化机制及其最佳控制,从而构建未来的健康食品社会
- 批准号:
19H02901 - 财政年份:2019
- 资助金额:
$ 25.4万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of oscillation control bearing based on the unsteady topology optimal design analysis
基于非定常拓扑优化设计分析的振动控制轴承研制
- 批准号:
18K03897 - 财政年份:2018
- 资助金额:
$ 25.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometric Analysis and Optimal Control of Quantum Systems in the KP Configuration; Generalizations to nonlinear Systems with Symmetries
KP 配置中量子系统的几何分析和优化控制;
- 批准号:
1710558 - 财政年份:2017
- 资助金额:
$ 25.4万 - 项目类别:
Standard Grant
Development of a unified framework for optimal control and estimation of nonlinear stochastic systems based on path integral analysis
基于路径积分分析的非线性随机系统最优控制和估计统一框架的开发
- 批准号:
15K18089 - 财政年份:2015
- 资助金额:
$ 25.4万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Analysis and Optimal Design of Aquatic and Atmospheric Vehicles That Use Biologically Inspired Propulsion and Control Methods
使用仿生推进和控制方法的水上和大气飞行器的分析和优化设计
- 批准号:
1435484 - 财政年份:2014
- 资助金额:
$ 25.4万 - 项目类别:
Standard Grant
Efficient computational methods for worst-case analysis and optimal control of nonlinear dynamical systems
用于非线性动力系统最坏情况分析和最优控制的有效计算方法
- 批准号:
DP120101549 - 财政年份:2012
- 资助金额:
$ 25.4万 - 项目类别:
Discovery Projects
Development of systems analysis and process control approaches for optimal soil and groundwater remediation
开发系统分析和过程控制方法以实现最佳土壤和地下水修复
- 批准号:
283317-2008 - 财政年份:2012
- 资助金额:
$ 25.4万 - 项目类别:
Discovery Grants Program - Individual
Development of systems analysis and process control approaches for optimal soil and groundwater remediation
开发系统分析和过程控制方法以实现最佳土壤和地下水修复
- 批准号:
283317-2008 - 财政年份:2011
- 资助金额:
$ 25.4万 - 项目类别:
Discovery Grants Program - Individual