CAREER: Development and Characterization of New High Thermal Conductivity Materials for Energy-Efficient Electronics and Photonics

职业:用于节能电子和光子学的新型高导热材料的开发和表征

基本信息

  • 批准号:
    1753393
  • 负责人:
  • 金额:
    $ 49.61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-06-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

Non-technical Description: With the ever-shrinking dimensions of electronic and photonic devices to the nanoscale, heat dissipation is an increasingly critical technological challenge. To address this challenge, discovering and understanding the properties of high thermal conductivity materials that can efficiently dissipate heat from hot spots and improve the performance of devices constitute an urgent need. This CAREER project aims to investigate new high thermal conductivity materials and understand the fundamental transport phenomena and mechanisms associated with the chemistry and structures of such materials. The PI is using complementary approaches, including multiscale modeling, advanced synthesis and characterization methods. These less explored materials are theoretically predicted to offer new paradigms to enable advanced electronics, optoelectronics, thermal energy conversion and management. The research components of this project are closely integrated with various education and outreach activities, offering cross-disciplinary training beyond traditional educational boundaries, and involving the participation of underrepresented and diversity groups. This is accomplished through industry-academia collaborations, development of a new interdisciplinary course curriculum, and establishment of a Nano-Energy outreach program.Technical Description: The principal investigator and his research team are investigating a new class of high thermal conductivity materials (such as BAs, BP, GeC) to address the critical challenge of heat dissipation in modern electronics and photonics. Some of these unique materials have been predicted recently by ab initio theory to have ultrahigh thermal conductivity, over 1000 W/mK, enabled by multiple factors, including a large mass ratio of the constitutive atoms, acoustic bunching, and isotopic purity. This CAREER project aims to experimentally realize these high thermal conductivity materials through a synergistic growth-measurement-model approach to investigate the optimum growth conditions, structural and thermal properties, and phonon transport mechanisms. The team develops new characterization tools, including advanced phonon spectral mapping spectroscopy based on the time-domain thermoreflectance technique, and advanced atomic-level material structural control methods, to establish detailed structure-property relationships with microscale quantification. Experimental measurement results including phonon mean free path spectra are analyzed using atomistic density functional theory and multiscale Boltzmann transport equations solved by Monte Carlo simulations. Completion of this project may lead to transformative technological innovations for advancing the performance and energy-efficiency of future electronics and photonics. In addition, the multidisciplinary research components are closely integrated with various education and outreach activities with graduate, undergraduate, and high school students, involving students from underrepresented minority groups.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:纳米级电子和光子设备的不断变化的尺寸,散热是越来越关键的技术挑战。为了应对这一挑战,发现和理解高热导率材料的特性,这些材料可以有效地从热点中散发热量并改善设备的性能构成了迫切需求。该职业项目旨在研究新的高热导率材料,并了解与此类材料的化学和结构相关的基本运输现象和机制。 PI正在使用互补方法,包括多尺度建模,高级合成和表征方法。从理论上讲,这些较少探索的材料可提供新的范式,以实现高级电子,光电,热能转换和管理。该项目的研究组成部分与各种教育和外展活动紧密相结合,提供了传统教育界限以外的跨学科培训,并涉及代表性不足和多样性小组的参与。这是通过行业 - 学科的合作,开发新的跨学科课程以及建立纳米能源外展计划的实现。技术描述:主要研究人员和他的研究团队正在研究一类新的高导热性材料(例如BAS,BP,bp,bp,bp,bp,bp,bp,bp,bp,bp,bp,bp,bp,bp,bp,bp),以对现代电子的热度介绍和Photics in Modern Electonics和Photics进行地质疑。这些独特的材料中的某些材料最近通过Ab Initio理论预测,具有超高的热导率,超过1000 W/MK,由多个因素启用,包括构成原子的质量比较高,声学束和同位素纯度。该职业项目旨在通过协同的生长测量模型方法在实验上实现这些高热导率材料,以研究最佳生长条件,结构和热性能以及声子传输机制。该团队开发了新的表征工具,包括基于时域热素侵占技术的高级声子光谱映射光谱,以及先进的原子级材料结构控制方法,以建立与微观量化的详细结构 - 培训关系。实验测量结果包括使用原子密度功能理论和通过Monte Carlo模拟求解的多尺度Boltzmann传输方程来分析包括声子平均游离路径光谱。该项目的完成可能会导致变革性的技术创新,以提高未来电子和光子学的性能和能源效率。此外,多学科研究组成部分与研究生,本科和高中生的各种教育和外展活动紧密相结合,涉及来自代表性不足的少数群体的学生。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子的智力和广泛影响来评估Criteria的评估。

项目成果

期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Complementary doping of van der Waals materials through controlled intercalation for monolithically integrated electronics
  • DOI:
    10.1007/s12274-020-2634-y
  • 发表时间:
    2020-03
  • 期刊:
  • 影响因子:
    9.9
  • 作者:
    M. Ke;Huuduy Nguyen;H. Fan;Man Li;Huan Wu;Yongjie Hu
  • 通讯作者:
    M. Ke;Huuduy Nguyen;H. Fan;Man Li;Huan Wu;Yongjie Hu
Anomalous thermal transport under high pressure in boron arsenide
  • DOI:
    10.1038/s41586-022-05381-x
  • 发表时间:
    2022-11-23
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    Li, Suixuan;Qin, Zihao;Hu, Yongjie
  • 通讯作者:
    Hu, Yongjie
Integration of boron arsenide cooling substrates into gallium nitride devices
  • DOI:
    10.1038/s41928-021-00595-9
  • 发表时间:
    2021-06-17
  • 期刊:
  • 影响因子:
    34.3
  • 作者:
    Kang, Joon Sang;Li, Man;Hu, Yongjie
  • 通讯作者:
    Hu, Yongjie
Ab initio investigations on hydrodynamic phonon transport: From diffusion to convection
Basic physical properties of cubic boron arsenide
  • DOI:
    10.1063/1.5116025
  • 发表时间:
    2019-09-16
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Kang, Joon Sang;Li, Man;Hu, Yongjie
  • 通讯作者:
    Hu, Yongjie
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yongjie Hu其他文献

Multistage dolomitization and formation of ultra-deep Lower Cambrian Longwangmiao Formation reservoir in central Sichuan Basin, China
川中下寒武统超深层龙王庙组储层多期白云石化作用及形成
  • DOI:
    10.1016/j.marpetgeo.2020.104752
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Dawei Liu;Chunfang Cai;Yongjie Hu;Yanyan Peng;Lei Jiang
  • 通讯作者:
    Lei Jiang
Treatment and hydrogen generation of bisphenol a by aqueous phase reforming over Ni-based catalysts with different supports
  • DOI:
    10.1016/j.ijhydene.2024.11.430
  • 发表时间:
    2025-01-13
  • 期刊:
  • 影响因子:
  • 作者:
    Yingying Yu;Yincheng Wang;Yongjie Hu;Xiaopeng Jia;Qingguo Bu;Beibei Yan;Chen Chen;Junyu Tao;Guanyi Chen
  • 通讯作者:
    Guanyi Chen
Nanotechnology for lower grade waste heat recovery
用于低品位废热回收的纳米技术
Upper Ediacaran fibrous dolomite versus Ordovician fibrous calcite cement: Origin and significance as a paleoenvironmental archive
上埃迪卡拉系纤维白云石与奥陶纪纤维方解石胶结物:起源和作为古环境档案的意义
  • DOI:
    10.1016/j.chemgeo.2022.121065
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Yongjie Hu;Chunfang Cai;Ying Li;Rui Zhou;Fuchang Lu;Junfeng Hu;Chaobo Ren;Lianqi Jia;Yuanquan Zhou;Kevin Lippert;Adrian Immenhauser
  • 通讯作者:
    Adrian Immenhauser
No energy transport without discord
没有不和谐就没有能量传输
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Lloyd;Zi;S. Pirandola;Vazrik Chiloyan;Yongjie Hu;S. Huberman;Gang Chen
  • 通讯作者:
    Gang Chen

Yongjie Hu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yongjie Hu', 18)}}的其他基金

Travel to attend 2019 Spring MRS Symposium on Emerging Thermal Materials - From Nanoscale to Multiscale Thermal Management, in Phoenix, Arizona, April 22-26, 2019.
前往参加 2019 年 4 月 22 日至 26 日在亚利桑那州凤凰城举行的 2019 年春季 MRS 新兴热材料研讨会 - 从纳米级到多尺度热管理。
  • 批准号:
    1929817
  • 财政年份:
    2019
  • 资助金额:
    $ 49.61万
  • 项目类别:
    Standard Grant

相似国自然基金

发展表征受限高分子薄膜协同动力学特征尺寸的方法
  • 批准号:
    22303084
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
共享发展视角下主客乡村依恋的表征、动因及对旅游价值共创的影响
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
量级感知影响数量表征的行为及脑机制:从人类个体发展的视角
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
量级感知影响数量表征的行为及脑机制:从人类个体发展的视角
  • 批准号:
    32171061
  • 批准年份:
    2021
  • 资助金额:
    58.00 万元
  • 项目类别:
    面上项目
共享发展视角下主客乡村依恋的表征、动因及对旅游价值共创的影响
  • 批准号:
    72102131
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Parallel Characterization of Genetic Variants in Chemotherapy-Induced Cardiotoxicity Using iPSCs
使用 iPSC 并行表征化疗引起的心脏毒性中的遗传变异
  • 批准号:
    10663613
  • 财政年份:
    2023
  • 资助金额:
    $ 49.61万
  • 项目类别:
Mechanistic characterization of vaginal microbiome-metabolome associations and metabolite-mediated host inflammation
阴道微生物组-代谢组关联和代谢物介导的宿主炎症的机制特征
  • 批准号:
    10663410
  • 财政年份:
    2023
  • 资助金额:
    $ 49.61万
  • 项目类别:
Characterization of seasonal CoV immunity and operationalization of a novel controlled human infection model for the betacoronavirus OC43
β冠状病毒 OC43 的季节性 CoV 免疫特征和新型受控人类感染模型的操作
  • 批准号:
    10663727
  • 财政年份:
    2023
  • 资助金额:
    $ 49.61万
  • 项目类别:
Functional Characterization of Tau Mutation and Post-translational Modifications
Tau 突变和翻译后修饰的功能表征
  • 批准号:
    10572436
  • 财政年份:
    2023
  • 资助金额:
    $ 49.61万
  • 项目类别:
Characterization of Altered Immunity in Patients with Inflammatory Arthritis Induced by Immune Checkpoint Inhibitor Therapy
免疫检查点抑制剂治疗引起的炎症性关节炎患者免疫改变的特征
  • 批准号:
    10885381
  • 财政年份:
    2023
  • 资助金额:
    $ 49.61万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了