CAREER: Development and Characterization of New High Thermal Conductivity Materials for Energy-Efficient Electronics and Photonics

职业:用于节能电子和光子学的新型高导热材料的开发和表征

基本信息

  • 批准号:
    1753393
  • 负责人:
  • 金额:
    $ 49.61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-06-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

Non-technical Description: With the ever-shrinking dimensions of electronic and photonic devices to the nanoscale, heat dissipation is an increasingly critical technological challenge. To address this challenge, discovering and understanding the properties of high thermal conductivity materials that can efficiently dissipate heat from hot spots and improve the performance of devices constitute an urgent need. This CAREER project aims to investigate new high thermal conductivity materials and understand the fundamental transport phenomena and mechanisms associated with the chemistry and structures of such materials. The PI is using complementary approaches, including multiscale modeling, advanced synthesis and characterization methods. These less explored materials are theoretically predicted to offer new paradigms to enable advanced electronics, optoelectronics, thermal energy conversion and management. The research components of this project are closely integrated with various education and outreach activities, offering cross-disciplinary training beyond traditional educational boundaries, and involving the participation of underrepresented and diversity groups. This is accomplished through industry-academia collaborations, development of a new interdisciplinary course curriculum, and establishment of a Nano-Energy outreach program.Technical Description: The principal investigator and his research team are investigating a new class of high thermal conductivity materials (such as BAs, BP, GeC) to address the critical challenge of heat dissipation in modern electronics and photonics. Some of these unique materials have been predicted recently by ab initio theory to have ultrahigh thermal conductivity, over 1000 W/mK, enabled by multiple factors, including a large mass ratio of the constitutive atoms, acoustic bunching, and isotopic purity. This CAREER project aims to experimentally realize these high thermal conductivity materials through a synergistic growth-measurement-model approach to investigate the optimum growth conditions, structural and thermal properties, and phonon transport mechanisms. The team develops new characterization tools, including advanced phonon spectral mapping spectroscopy based on the time-domain thermoreflectance technique, and advanced atomic-level material structural control methods, to establish detailed structure-property relationships with microscale quantification. Experimental measurement results including phonon mean free path spectra are analyzed using atomistic density functional theory and multiscale Boltzmann transport equations solved by Monte Carlo simulations. Completion of this project may lead to transformative technological innovations for advancing the performance and energy-efficiency of future electronics and photonics. In addition, the multidisciplinary research components are closely integrated with various education and outreach activities with graduate, undergraduate, and high school students, involving students from underrepresented minority groups.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:随着电子和光子器件的尺寸不断缩小到纳米级,散热是一个越来越关键的技术挑战。为了应对这一挑战,发现和了解高导热材料的性能,可以有效地从热点散热,提高器件的性能构成了迫切的需求。这个CAREER项目旨在研究新的高导热材料,并了解与此类材料的化学和结构相关的基本传输现象和机制。PI正在使用互补的方法,包括多尺度建模,先进的合成和表征方法。理论上,这些探索较少的材料预计将提供新的范例,以实现先进的电子学,光电子学,热能转换和管理。该项目的研究部分与各种教育和外联活动密切结合,提供超越传统教育界限的跨学科培训,并让代表性不足和多样性群体参与。这是通过产学合作,开发新的跨学科课程,并建立一个纳米能源推广计划。技术描述:首席研究员和他的研究团队正在研究一类新的高导热材料(如BA,BP,GeC),以解决现代电子和光子学中散热的关键挑战。这些独特的材料中的一些最近已经通过从头算理论预测具有超过1000 W/mK的热导率,这是由多种因素实现的,包括组成原子的大质量比,声学聚束和同位素纯度。该CAREER项目旨在通过协同生长测量模型方法实验实现这些高热导率材料,以研究最佳生长条件,结构和热性能以及声子传输机制。该团队开发了新的表征工具,包括基于时域热反射技术的先进声子光谱映射光谱,以及先进的原子级材料结构控制方法,以建立详细的结构-性能关系和微尺度量化。实验测量结果,包括声子平均自由程谱进行了分析,使用原子密度泛函理论和多尺度玻尔兹曼输运方程求解Monte Carlo模拟。该项目的完成可能会带来变革性的技术创新,以提高未来电子和光子学的性能和能效。此外,多学科研究部分与研究生、本科生和高中生的各种教育和外展活动紧密结合,涉及代表性不足的少数群体的学生。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Complementary doping of van der Waals materials through controlled intercalation for monolithically integrated electronics
  • DOI:
    10.1007/s12274-020-2634-y
  • 发表时间:
    2020-03
  • 期刊:
  • 影响因子:
    9.9
  • 作者:
    M. Ke;Huuduy Nguyen;H. Fan;Man Li;Huan Wu;Yongjie Hu
  • 通讯作者:
    M. Ke;Huuduy Nguyen;H. Fan;Man Li;Huan Wu;Yongjie Hu
Anomalous thermal transport under high pressure in boron arsenide
  • DOI:
    10.1038/s41586-022-05381-x
  • 发表时间:
    2022-11-23
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    Li, Suixuan;Qin, Zihao;Hu, Yongjie
  • 通讯作者:
    Hu, Yongjie
Integration of boron arsenide cooling substrates into gallium nitride devices
  • DOI:
    10.1038/s41928-021-00595-9
  • 发表时间:
    2021-06-17
  • 期刊:
  • 影响因子:
    34.3
  • 作者:
    Kang, Joon Sang;Li, Man;Hu, Yongjie
  • 通讯作者:
    Hu, Yongjie
Ab initio investigations on hydrodynamic phonon transport: From diffusion to convection
Nonperturbative determination of isotope-induced anomalous vibrational physics
同位素引起的异常振动物理的非微扰测定
  • DOI:
    10.1103/physrevb.108.l140302
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Wu, Huan;Qin, Zihao;Li, Suixuan;Lindsay, Lucas;Hu, Yongjie
  • 通讯作者:
    Hu, Yongjie
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yongjie Hu其他文献

Nanotechnology for lower grade waste heat recovery
用于低品位废热回收的纳米技术
Upper Ediacaran fibrous dolomite versus Ordovician fibrous calcite cement: Origin and significance as a paleoenvironmental archive
上埃迪卡拉系纤维白云石与奥陶纪纤维方解石胶结物:起源和作为古环境档案的意义
  • DOI:
    10.1016/j.chemgeo.2022.121065
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Yongjie Hu;Chunfang Cai;Ying Li;Rui Zhou;Fuchang Lu;Junfeng Hu;Chaobo Ren;Lianqi Jia;Yuanquan Zhou;Kevin Lippert;Adrian Immenhauser
  • 通讯作者:
    Adrian Immenhauser
COsub2/sub-enhanced recovery of fulvic acid via activated carbon adsorption: a novel approach to sustainable wastewater treatment
通过活性炭吸附强化回收富里酸的二氧化碳:一种可持续废水处理的新方法
  • DOI:
    10.1016/j.seppur.2025.133706
  • 发表时间:
    2025-11-28
  • 期刊:
  • 影响因子:
    9.000
  • 作者:
    Junyu Tao;Yincheng Wang;Yingying Yu;Yongjie Hu;Chen Chen;Ning Li;Beibei Yan;Zhanjun Cheng;Guanyi Chen
  • 通讯作者:
    Guanyi Chen
Hydrothermal oxygen uncoupling of high-concentration biogas slurry over Cu-α-Fesub2/subOsub3/sub·α-MoOsub3/sub catalyst
Cu-α-Fe₂O₃·α-MoO₃催化剂上高浓度沼液的水热析氧解耦
  • DOI:
    10.1016/j.jenvman.2022.115827
  • 发表时间:
    2022-10-15
  • 期刊:
  • 影响因子:
    8.400
  • 作者:
    Jian Wang;Junyu Tao;Xiaoshan Dong;Zibiao Liu;Donghao Hou;Yongjie Hu;Beibei Yan;Hong Su;Guanyi Chen
  • 通讯作者:
    Guanyi Chen
No energy transport without discord
没有不和谐就没有能量传输
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Lloyd;Zi;S. Pirandola;Vazrik Chiloyan;Yongjie Hu;S. Huberman;Gang Chen
  • 通讯作者:
    Gang Chen

Yongjie Hu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yongjie Hu', 18)}}的其他基金

Travel to attend 2019 Spring MRS Symposium on Emerging Thermal Materials - From Nanoscale to Multiscale Thermal Management, in Phoenix, Arizona, April 22-26, 2019.
前往参加 2019 年 4 月 22 日至 26 日在亚利桑那州凤凰城举行的 2019 年春季 MRS 新兴热材料研讨会 - 从纳米级到多尺度热管理。
  • 批准号:
    1929817
  • 财政年份:
    2019
  • 资助金额:
    $ 49.61万
  • 项目类别:
    Standard Grant

相似国自然基金

水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
  • 批准号:
    32070202
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

Innervating stackable neural organoid slices with tissue-like mesh electrodes for improved neural circuit development and characterization
具有组织样网状电极的神经支配可堆叠神经类器官切片,可改善神经回路的发育和表征
  • 批准号:
    2326703
  • 财政年份:
    2024
  • 资助金额:
    $ 49.61万
  • 项目类别:
    Standard Grant
In situ structural characterization of membrane proteins for drug development
用于药物开发的膜蛋白的原位结构表征
  • 批准号:
    2898988
  • 财政年份:
    2023
  • 资助金额:
    $ 49.61万
  • 项目类别:
    Studentship
Characterization and Early Assays Development in FOXG1 Deficient Neurons
FOXG1 缺陷神经元的表征和早期检测开发
  • 批准号:
    10727503
  • 财政年份:
    2023
  • 资助金额:
    $ 49.61万
  • 项目类别:
Development and characterization of anti-P. gingivalis peptides
抗 P 的开发和表征。
  • 批准号:
    10625080
  • 财政年份:
    2023
  • 资助金额:
    $ 49.61万
  • 项目类别:
RII Track-4: NSF: Development, Characterization and Performance Evaluation of Surface Engineered Additively Manufactured Parts for Nuclear Reactors
RII Track-4:NSF:核反应堆表面工程增材制造零件的开发、表征和性能评估
  • 批准号:
    2332471
  • 财政年份:
    2023
  • 资助金额:
    $ 49.61万
  • 项目类别:
    Standard Grant
RII Track-4: NSF: Development, Characterization and Performance Evaluation of Surface Engineered Additively Manufactured Parts for Nuclear Reactors
RII Track-4:NSF:核反应堆表面工程增材制造零件的开发、表征和性能评估
  • 批准号:
    2229076
  • 财政年份:
    2023
  • 资助金额:
    $ 49.61万
  • 项目类别:
    Standard Grant
Functional Characterization and Development of Therapeutic Paradigms for DNA Damage Repair (DDR)-deficient Lethal Prostate Cancer
DNA 损伤修复 (DDR) 缺陷的致死性前列腺癌的功能表征和治疗范例的开发
  • 批准号:
    10675929
  • 财政年份:
    2023
  • 资助金额:
    $ 49.61万
  • 项目类别:
Development of standardized resources for characterization of the resident ocular surface microbiome.
开发用于表征驻留眼表微生物组的标准化资源。
  • 批准号:
    10661354
  • 财政年份:
    2023
  • 资助金额:
    $ 49.61万
  • 项目类别:
Development and characterization of size isolated microbubbles, nanobubbles and nanodroplets for ultrasound imaging and therapy
用于超声成像和治疗的尺寸隔离微泡、纳米泡和纳米液滴的开发和表征
  • 批准号:
    493125
  • 财政年份:
    2023
  • 资助金额:
    $ 49.61万
  • 项目类别:
The development and characterization of biomimetic phantom Objective
仿生体模的开发与表征
  • 批准号:
    2841055
  • 财政年份:
    2023
  • 资助金额:
    $ 49.61万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了