CAREER: Real-Time Crowd-Oriented Search and Computation Systems

职业:面向人群的实时搜索和计算系统

基本信息

  • 批准号:
    1149383
  • 负责人:
  • 金额:
    $ 50.33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-02-15 至 2018-01-31
  • 项目状态:
    已结题

项目摘要

While long-lived communities have been one of the key organizing principles of Web-based systems, there is widespread evidence of highly-dynamic, ad-hoc crowd formation in emerging real-time socio-computational systems. These crowds are dynamically formed and potentially short-lived, often with only implicit signals of their formation and evolution. The goal of this research project is to develop the framework, algorithms, and systems for lightweight crowd-oriented search and computation so that stakeholders can distill high-quality information from bursty social systems and actively engage with the crowds generating this information. First, the project provides the foundation for crowd-oriented search through new algorithmic advances for distributed crowd indexing and in an investigation of the design principles impacting crowd-oriented search. Next, the project develops self-tuning methods for assessing crowd quality, even with huge demands on efficiency and in the presence of limited evidence of crowd quality. Finally, the project explores methods for "closing the loop" in crowd-oriented search, so that crowds may become part of in situ human-computational systems. The education and outreach efforts of the project are tightly linked to the research goals through leadership workshops, enhancements to the curricula, direct research training, and engagement with emergency response experts and major companies. Distilling high-quality information from bursty social systems and actively engaging with the crowds generating this information will result in improved real-time decision-making, impacting a wide range of stakeholders from areas such as epidemiology, law enforcement, government, finance, politics, among many others. Further information can be found on the project web page: http://faculty.cse.tamu.edu/caverlee/csc/.
虽然长寿的社区一直是基于Web的系统的关键组织原则之一,有广泛的证据表明,在新兴的实时社会计算系统的高度动态,特设人群的形成。这些群体是动态形成的,可能是短暂的,往往只有其形成和演变的隐含信号。该研究项目的目标是开发轻量级面向人群的搜索和计算的框架,算法和系统,以便利益相关者可以从突发的社会系统中提取高质量的信息,并积极参与产生这些信息的人群。首先,该项目通过分布式人群索引的新算法进步和对影响面向人群搜索的设计原则的调查,为面向人群的搜索提供了基础。接下来,该项目开发了用于评估人群质量的自调整方法,即使对效率的要求很高,并且人群质量的证据有限。最后,该项目探索了在面向人群的搜索中“闭合循环”的方法,以便人群可以成为现场人类计算系统的一部分。该项目的教育和外联工作与研究目标密切相关,办法是举办领导能力讲习班、改进课程、直接研究培训以及与应急专家和大公司接触。从突发的社会系统中提取高质量的信息,并积极与产生这些信息的人群互动,将改善实时决策,影响来自流行病学、执法、政府、金融、政治等领域的广泛利益相关者。更多信息可在项目网页上找到:http://faculty.cse.tamu.edu/caverlee/csc/。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Caverlee其他文献

Geography and Web Communities
地理和网络社区
  • DOI:
    10.1007/978-1-4939-7131-2_220
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    James Caverlee;Zhiyuan Cheng
  • 通讯作者:
    Zhiyuan Cheng
Discovering and ranking web services with BASIL: a personalized approach with biased focus
使用 BASIL 发现 Web 服务并对其进行排名:具有偏向性的个性化方法
Crowdsourced App Review Manipulation
众包应用程序审查操纵
Improving Linguistic Bias Detection in Wikipedia using Cross-Domain Adaptive Pre-Training
使用跨域自适应预训练改进维基百科中的语言偏差检测
LExL: A Learning Approach for Local Expert Discovery on Twitter
LExL:在 Twitter 上发现本地专家的学习方法
  • DOI:
    10.1007/978-3-319-30671-1_71
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Wei Niu;Zhijiao Liu;James Caverlee
  • 通讯作者:
    James Caverlee

James Caverlee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Caverlee', 18)}}的其他基金

FAI: Towards Fairness in Deep Neural Networks with Learning Interpretation
FAI:通过学习解释实现深度神经网络的公平
  • 批准号:
    1939716
  • 财政年份:
    2020
  • 资助金额:
    $ 50.33万
  • 项目类别:
    Standard Grant
III: Small: Collaborative Research: Modeling and Managing Extremist Group Influence in Massive Social Media Networks
III:小型:协作研究:在大规模社交媒体网络中建模和管理极端主义团体的影响力
  • 批准号:
    1909252
  • 财政年份:
    2019
  • 资助金额:
    $ 50.33万
  • 项目类别:
    Standard Grant
EAGER: Fairness-Aware Personalized Recommendations
EAGER:具有公平意识的个性化推荐
  • 批准号:
    1841138
  • 财政年份:
    2018
  • 资助金额:
    $ 50.33万
  • 项目类别:
    Standard Grant
RAPID: Earthquake Damage Assessment from Social Media
RAPID:社交媒体地震损失评估
  • 批准号:
    1138646
  • 财政年份:
    2011
  • 资助金额:
    $ 50.33万
  • 项目类别:
    Standard Grant

相似国自然基金

Immuno-Real Time PCR法精确定量血清MG7抗原及在早期胃癌预警中的价值
  • 批准号:
    30600737
  • 批准年份:
    2006
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
无色ReAl3(BO3)4(Re=Y,Lu)系列晶体紫外倍频性能与器件研究
  • 批准号:
    60608018
  • 批准年份:
    2006
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Real-Time First-Principles Approach to Understanding Many-Body Effects on High Harmonic Generation in Solids
职业:实时第一性原理方法来理解固体高次谐波产生的多体效应
  • 批准号:
    2337987
  • 财政年份:
    2024
  • 资助金额:
    $ 50.33万
  • 项目类别:
    Continuing Grant
CAREER: Secure Miniaturized Bio-Electronic Sensors for Real-Time In-Body Monitoring
职业:用于实时体内监测的安全微型生物电子传感器
  • 批准号:
    2338792
  • 财政年份:
    2024
  • 资助金额:
    $ 50.33万
  • 项目类别:
    Continuing Grant
CAREER: Towards Safety-Critical Real-Time Systems with Learning Components
职业:迈向具有学习组件的安全关键实时系统
  • 批准号:
    2340171
  • 财政年份:
    2024
  • 资助金额:
    $ 50.33万
  • 项目类别:
    Continuing Grant
CAREER: Personalized, wearable robot mobility assistance considering human-robot co-adaptation that incorporates biofeedback, user coaching, and real-time optimization
职业:个性化、可穿戴机器人移动辅助,考虑人机协同适应,结合生物反馈、用户指导和实时优化
  • 批准号:
    2340519
  • 财政年份:
    2024
  • 资助金额:
    $ 50.33万
  • 项目类别:
    Continuing Grant
CAREER: SHF: Bio-Inspired Microsystems for Energy-Efficient Real-Time Sensing, Decision, and Adaptation
职业:SHF:用于节能实时传感、决策和适应的仿生微系统
  • 批准号:
    2340799
  • 财政年份:
    2024
  • 资助金额:
    $ 50.33万
  • 项目类别:
    Continuing Grant
CAREER: Real-time control of elementary catalytic steps: Controlling total vs partial electrocatalytic oxidation of alkanes and olefins
职业:实时控制基本催化步骤:控制烷烃和烯烃的全部与部分电催化氧化
  • 批准号:
    2338627
  • 财政年份:
    2024
  • 资助金额:
    $ 50.33万
  • 项目类别:
    Continuing Grant
CAREER: Frequency Agile Real-Time Reconfigurable RF Analog Co-Processor Design Leveraging Engineered Nanoparticle and 3D Printing
职业:利用工程纳米颗粒和 3D 打印进行频率捷变实时可重构射频模拟协处理器设计
  • 批准号:
    2340268
  • 财政年份:
    2024
  • 资助金额:
    $ 50.33万
  • 项目类别:
    Continuing Grant
CAREER: Foundations of Scalable and Resilient Distributed Real-Time Decision Making in Open Multi-Agent Systems
职业:开放多代理系统中可扩展和弹性分布式实时决策的基础
  • 批准号:
    2339509
  • 财政年份:
    2024
  • 资助金额:
    $ 50.33万
  • 项目类别:
    Continuing Grant
CAREER: Semantic and Goal-oriented Status Updating for Real-time Inference, Monitoring, and Decision-Making
职业:语义和目标导向的状态更新,用于实时推理、监控和决策
  • 批准号:
    2239677
  • 财政年份:
    2023
  • 资助金额:
    $ 50.33万
  • 项目类别:
    Continuing Grant
CAREER: Open-Access, Real-Time High-Throughput Metabolomics for High-Field and Benchtop NMR for Biological Inquiry
职业:用于生物研究的高场和台式 NMR 的开放获取、实时高通量代谢组学
  • 批准号:
    2237314
  • 财政年份:
    2023
  • 资助金额:
    $ 50.33万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了