FAI: Towards Fairness in Deep Neural Networks with Learning Interpretation
FAI:通过学习解释实现深度神经网络的公平
基本信息
- 批准号:1939716
- 负责人:
- 金额:$ 50.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Deep neural networks (DNNs) have achieved great successes in a wide range of applications such as computer vision and natural language processing. Unfortunately, inherent discrimination widely exists in DNNs towards minority subgroups. To facilitate fairness in deep learning, this project is to tackle the challenging problem of algorithmic discrimination in designing, evaluating, as well as deploying DNN systems. The successful outcome of this project will lead to advances in providing theoretical understandings and practical algorithms to enable fairness in complicated deep learning models and predictions. The education program that integrates machine learning, industrial statistics, and social sciences is to train students with data analytics technologies in information systems, to attract members of underrepresented groups to pursue careers in STEM.The primary goal of this project is to systematically investigate and facilitate fairness in deep neural networks by leveraging the interpretability of key elements in a machine learning life-cycle including modeling, data preparation and feature engineering. Specifically, the proposed frameworks uncover the intrinsic properties of fairness in deep learning from the following aspects. Auxiliary training objectives are designed to regularize the augmented local interpretation to promote the fairness of classical DNN architectures. Data construction and data augmentation approaches are developed towards reconstructing a fair dataset for DNN training. Through identifying sensitive features in applications, domain knowledge is extracted and reinforcement learning is further developed to optimize the model fairness under realistic constraints. Finally, the proposed research innovations could be embedded in DNN based real systems, such as medical diagnosis and recommender systems, with concrete solutions and evaluation measurements.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
深度神经网络(DNN)在计算机视觉和自然语言处理等广泛应用中取得了巨大成功。不幸的是,DNN中广泛存在对少数群体的固有歧视。为了促进深度学习的公平性,该项目旨在解决设计、评估和部署DNN系统中算法歧视的挑战性问题。该项目的成功结果将导致在提供理论理解和实用算法方面取得进展,以实现复杂深度学习模型和预测的公平性。该教育计划整合了机器学习,工业统计和社会科学,旨在培养学生掌握信息系统中的数据分析技术,吸引代表性不足的群体成员从事STEM职业。该项目的主要目标是通过利用机器学习生命周期中关键元素的可解释性,系统地研究并促进深度神经网络的公平性,包括建模,数据准备和特征工程。具体来说,拟议的框架从以下方面揭示了深度学习中公平性的内在属性。辅助训练目标被设计为正则化增强的局部解释,以促进经典DNN架构的公平性。数据构建和数据增强方法是为了重建DNN训练的公平数据集而开发的。通过识别应用中的敏感特征,提取领域知识,并进一步发展强化学习,以优化现实约束下的模型公平性。最后,建议的研究创新可以嵌入到基于DNN的真实的系统中,例如医疗诊断和推荐系统,并提供具体的解决方案和评估措施。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multi-Task Learning for Post-transplant Cause of Death Analysis: A Case Study on Liver Transplant
- DOI:10.48550/arxiv.2304.00012
- 发表时间:2023-03
- 期刊:
- 影响因子:0
- 作者:Sirui Ding;Qiaoyu Tan;Chia-yuan Chang;Na Zou;Kai Zhang;N. Hoot;Xiaoqian Jiang;Xia Hu
- 通讯作者:Sirui Ding;Qiaoyu Tan;Chia-yuan Chang;Na Zou;Kai Zhang;N. Hoot;Xiaoqian Jiang;Xia Hu
Fair Graph Distillation
公平图蒸馏
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Feng, Qizhang;Jiang, Zhimeng;Li, Ruiquan;Wang, Yicheng Wang;Zou, Na Zou;Bian, Jiang;Hu, Xia
- 通讯作者:Hu, Xia
Measuring and Mitigating Item Under-Recommendation Bias in Personalized Ranking Systems
- DOI:10.1145/3397271.3401177
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:Ziwei Zhu;Jianling Wang;James Caverlee
- 通讯作者:Ziwei Zhu;Jianling Wang;James Caverlee
In-Processing Modeling Techniques for Machine Learning Fairness: A Survey
- DOI:10.1145/3551390
- 发表时间:2022-07
- 期刊:
- 影响因子:3.6
- 作者:Mingyang Wan;D. Zha;Ninghao Liu;Na Zou
- 通讯作者:Mingyang Wan;D. Zha;Ninghao Liu;Na Zou
Towards Debiasing DNN Models from Spurious Feature Influence
- DOI:10.1609/aaai.v36i9.21185
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Mengnan Du;Ruixiang Tang;Weijie Fu;Xia Hu
- 通讯作者:Mengnan Du;Ruixiang Tang;Weijie Fu;Xia Hu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Caverlee其他文献
Geography and Web Communities
地理和网络社区
- DOI:
10.1007/978-1-4939-7131-2_220 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
James Caverlee;Zhiyuan Cheng - 通讯作者:
Zhiyuan Cheng
Discovering and ranking web services with BASIL: a personalized approach with biased focus
使用 BASIL 发现 Web 服务并对其进行排名:具有偏向性的个性化方法
- DOI:
10.1145/1035167.1035190 - 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
James Caverlee;Ling Liu;D. Rocco - 通讯作者:
D. Rocco
Crowdsourced App Review Manipulation
众包应用程序审查操纵
- DOI:
10.1145/3077136.3080741 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Shanshan Li;James Caverlee;Wei Niu;Parisa Kaghazgaran - 通讯作者:
Parisa Kaghazgaran
Improving Linguistic Bias Detection in Wikipedia using Cross-Domain Adaptive Pre-Training
使用跨域自适应预训练改进维基百科中的语言偏差检测
- DOI:
10.1145/3487553.3524926 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
K. Madanagopal;James Caverlee - 通讯作者:
James Caverlee
LExL: A Learning Approach for Local Expert Discovery on Twitter
LExL:在 Twitter 上发现本地专家的学习方法
- DOI:
10.1007/978-3-319-30671-1_71 - 发表时间:
2016 - 期刊:
- 影响因子:6.2
- 作者:
Wei Niu;Zhijiao Liu;James Caverlee - 通讯作者:
James Caverlee
James Caverlee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Caverlee', 18)}}的其他基金
III: Small: Collaborative Research: Modeling and Managing Extremist Group Influence in Massive Social Media Networks
III:小型:协作研究:在大规模社交媒体网络中建模和管理极端主义团体的影响力
- 批准号:
1909252 - 财政年份:2019
- 资助金额:
$ 50.92万 - 项目类别:
Standard Grant
EAGER: Fairness-Aware Personalized Recommendations
EAGER:具有公平意识的个性化推荐
- 批准号:
1841138 - 财政年份:2018
- 资助金额:
$ 50.92万 - 项目类别:
Standard Grant
CAREER: Real-Time Crowd-Oriented Search and Computation Systems
职业:面向人群的实时搜索和计算系统
- 批准号:
1149383 - 财政年份:2012
- 资助金额:
$ 50.92万 - 项目类别:
Continuing Grant
RAPID: Earthquake Damage Assessment from Social Media
RAPID:社交媒体地震损失评估
- 批准号:
1138646 - 财政年份:2011
- 资助金额:
$ 50.92万 - 项目类别:
Standard Grant
相似海外基金
Sexual offence interviewing: Towards victim-survivor well-being and justice
性犯罪面谈:为了受害者-幸存者的福祉和正义
- 批准号:
DE240100109 - 财政年份:2024
- 资助金额:
$ 50.92万 - 项目类别:
Discovery Early Career Researcher Award
Unlocking the sensory secrets of predatory wasps: towards predictive tools for managing wasps' ecosystem services in the Anthropocene
解开掠食性黄蜂的感官秘密:开发用于管理人类世黄蜂生态系统服务的预测工具
- 批准号:
NE/Y001397/1 - 财政年份:2024
- 资助金额:
$ 50.92万 - 项目类别:
Research Grant
Development of programmable nanomachines towards the enzymatic synthesis of peptide oligonucleotide conjugates
开发用于肽寡核苷酸缀合物酶促合成的可编程纳米机器
- 批准号:
EP/X019624/1 - 财政年份:2024
- 资助金额:
$ 50.92万 - 项目类别:
Fellowship
Postdoctoral Fellowship: STEMEdIPRF: Towards a Diverse Professoriate: Experiences that Inform Underrepresented Scholars' Perceptions of Value Alignment and Career Decisions
博士后奖学金:STEMEdIPRF:走向多元化的教授职称:为代表性不足的学者对价值调整和职业决策的看法提供信息的经验
- 批准号:
2327411 - 财政年份:2024
- 资助金额:
$ 50.92万 - 项目类别:
Standard Grant
CAREER: Adaptive Deep Learning Systems Towards Edge Intelligence
职业:迈向边缘智能的自适应深度学习系统
- 批准号:
2338512 - 财政年份:2024
- 资助金额:
$ 50.92万 - 项目类别:
Continuing Grant
CAREER: Towards highly efficient UV emitters with lattice engineered substrates
事业:采用晶格工程基板实现高效紫外线发射器
- 批准号:
2338683 - 财政年份:2024
- 资助金额:
$ 50.92万 - 项目类别:
Continuing Grant
ASCENT: Heterogeneously Integrated and AI-Empowered Millimeter-Wave Wide-Bandgap Transmitter Array towards Energy- and Spectrum-Efficient Next-G Communications
ASCENT:异构集成和人工智能支持的毫米波宽带隙发射机阵列,实现节能和频谱高效的下一代通信
- 批准号:
2328281 - 财政年份:2024
- 资助金额:
$ 50.92万 - 项目类别:
Standard Grant
Collaborative Research: Maritime to Inland Transitions Towards ENvironments for Convection Initiation (MITTEN CI)
合作研究:海洋到内陆向对流引发环境的转变(MITTEN CI)
- 批准号:
2349935 - 财政年份:2024
- 资助金额:
$ 50.92万 - 项目类别:
Continuing Grant
Collaborative Research: Maritime to Inland Transitions Towards ENvironments for Convection Initiation (MITTEN CI)
合作研究:海洋到内陆向对流引发环境的转变(MITTEN CI)
- 批准号:
2349934 - 财政年份:2024
- 资助金额:
$ 50.92万 - 项目类别:
Continuing Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 50.92万 - 项目类别:
Standard Grant