CAREER: Explicit Methods in Arithmetic Geometry
职业:算术几何中的显式方法
基本信息
- 批准号:1151047
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-15 至 2013-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The PI proposes to research algorithms for cohomological automorphic forms and the arithmetic of curves parametrized by congruence semi-arithmetic groups. This proposal interrelates abstract theory and practical computation, linking research with the development of tools and concrete projects which will be integrated into undergraduate and graduate education. In the first proposed activity, the PI will prove that there exists an algorithm to compute the cohomology of an arithmetic group as a Hecke module. The PI will implement the proposed algorithm robustly in a computer algebra system, collect and analyze data, and conjecture and prove results based on the discovered phenomena. In the second activity, the PI will study arithmetic applications of Galois Belyi covers that arise from a modular embedding of a triangle group into a quaternionic unit group. The PI will investigate questions of modularity, parametrization of elliptic curves, and special points arising from this construction. The proposed research will allow explicit investigation of the Langlands correspondence--the deep connection between automorphic forms, algebraic groups, and Galois representations--in both classical and novel settings, exploring exciting new ground.Classical unsolved problems often serve as the genesis for the formulation of a rich and unified mathematical fabric. Diophantus of Alexandria first sought solutions to algebraic equations in integers almost two thousand years ago. Today, mathematicians recognize that geometric properties often govern the behavior of arithmetic objects.Furthermore, computational tools provide a means to test conjectures and can sometimes furnish partial solutions; at the same time, theoretical advances fuel dramatic improvements in computation. The theory, design, and implementation of algorithms in arithmetic geometry is a burgeoning area, and there are many exciting applications of these methods to diverse fields. The PI further proposes many specific projects at the undergraduate and graduate level, and the proposed algorithmic tools will be integrated into teaching, training, and learning. The PI will continue undergraduate outreach, mentoring of undergraduate and graduate students, and expository writing and extensive lectures aimed at communicating high level mathematics to a student audience. Finally, the PI will design a course on the mathematics of cryptography for teacher leaders who have graduated from the Vermont Mathematics Initiative (VMI)
PI提出研究上同调自守型的算法和由同余半算术群参数化的曲线的算法。 该提案将抽象理论与实际计算联系起来,将研究与工具和具体项目的开发联系起来,这些工具和项目将融入本科和研究生教育。 在第一个提议的活动中,PI将证明存在一个算法来计算算术群作为Hecke模的上同调。 PI将在计算机代数系统中稳健地实现所提出的算法,收集和分析数据,并根据发现的现象推测和证明结果。 在第二个活动中,PI将研究Galois Belyi覆盖的算术应用,这些覆盖来自三角形群到四元数单位群的模嵌入。 PI将研究模块化,椭圆曲线的参数化以及由此构造产生的特殊点的问题。 拟议的研究将允许明确调查朗兰兹对应-自守形式,代数群和伽罗瓦表示之间的深层联系-在经典和新颖的设置,探索令人兴奋的新天地。经典未解决的问题往往作为制定一个丰富的和统一的数学结构的起源。 亚历山大的丢番图(Diophantus of Alexandria)最早在两千年前就开始用整数求解代数方程。 今天,数学家们认识到,几何性质往往支配算术对象的行为。此外,计算工具提供了一种测试几何的手段,有时可以提供部分解;与此同时,理论的进步推动了计算的巨大进步。 算术几何中算法的理论、设计和实现是一个新兴的领域,这些方法在不同的领域有许多令人兴奋的应用。 PI还提出了许多本科生和研究生级别的具体项目,所提出的算法工具将被整合到教学,培训和学习中。 PI将继续本科推广,本科生和研究生的指导,以及临时写作和广泛的讲座,旨在向学生观众传达高层次的数学。 最后,PI将为从佛蒙特州数学倡议(VMI)毕业的教师领导人设计一门密码学数学课程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Voight其他文献
ON GALOIS INERTIAL
伽罗瓦惯性
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Lassina Dembélé;And NUNO FREITAS;John Voight - 通讯作者:
John Voight
Quadratic forms that represent almost the same primes
表示几乎相同素数的二次形式
- DOI:
10.1090/s0025-5718-07-01976-x - 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
John Voight - 通讯作者:
John Voight
Correction to: Commensurability classes of fake quadrics
- DOI:
10.1007/s00029-019-0502-y - 发表时间:
2019-09-06 - 期刊:
- 影响因子:1.200
- 作者:
Benjamin Linowitz;Matthew Stover;John Voight - 通讯作者:
John Voight
On abelian varieties whose torsion is not self-dual
关于扭转不是自对偶的阿贝尔簇
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Sarah Frei;Katrina Honigs;John Voight - 通讯作者:
John Voight
Twists of Hilbert modular forms
希尔伯特模形式的扭曲
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Nathan C. Ryan;Gonzalo Tornaría;John Voight - 通讯作者:
John Voight
John Voight的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Voight', 18)}}的其他基金
ANTS XIV: Algorithmic Number Theory Symposium 2020
ANTS XIV:2020 算法数论研讨会
- 批准号:
1946311 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Number Theory: From Arithmetic Statistics to Zeta Elements II
数论:从算术统计到 Zeta 元素 II
- 批准号:
1519977 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Number theory: from Arithmetic statistics to Zeta elements, June 5-6, 2014
数论:从算术统计到 Zeta 元素,2014 年 6 月 5-6 日
- 批准号:
1430032 - 财政年份:2014
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Explicit Methods in Arithmetic Geometry
职业:算术几何中的显式方法
- 批准号:
1346894 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Quaternion algebras, Shimura curves, and modular forms: Algorithms and arithmetic
四元数代数、Shimura 曲线和模形式:算法和算术
- 批准号:
0901971 - 财政年份:2009
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似海外基金
Emotional education programs focusing on implicit and explicit affect: Development of early intervention methods and examination of their effectiveness
关注内隐和外显情感的情绪教育项目:早期干预方法的开发及其有效性检验
- 批准号:
23K02962 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Classification of learners based on explicit and implicit shyness and an examination of appropriate learning environments and support methods
根据显性和隐性害羞对学习者进行分类,并检查适当的学习环境和支持方法
- 批准号:
23K02874 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Explicit Methods for non-holomorphic Hilbert Modular Forms
非全纯希尔伯特模形式的显式方法
- 批准号:
EP/V026321/1 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Research Grant
Japanese EFL learners and article usage: Locating precise variables that affect explicit instruction through web-based methods
日本英语学习者和文章使用:通过基于网络的方法找到影响显式教学的精确变量
- 批准号:
21K13081 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Explicit Methods for Finding Rational Points on Varieties
寻找品种有理点的显式方法
- 批准号:
1902199 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Convergence Accelerator Phase I (RAISE): Spatially-Explicit Models, Methods, and Services for Open Knowledge Networks
融合加速器第一阶段 (RAISE):开放知识网络的空间显式模型、方法和服务
- 批准号:
1936677 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Explicit methods in number theory
数论中的显式方法
- 批准号:
RGPIN-2014-05742 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
Explicit Methods for Linear and Non-Linear Tomography
线性和非线性层析成像的显式方法
- 批准号:
1814104 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Explicit methods in arithmetic geometry
算术几何中的显式方法
- 批准号:
261486-2013 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
Explicit Methods for the Local Langlands Correspondence
当地朗兰对应的显式方法
- 批准号:
1701474 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant