Modern Methods in Calculus of Variations with Applications to Polycrystalline and Granular Materials
现代变分法在多晶和粒状材料中的应用
基本信息
- 批准号:1156393
- 负责人:
- 金额:$ 15.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-15 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The investigator develops new methods needed to study key issues in the emerging area of Calculus of Variations in L-infinity, for the case where the functionals to be minimized are the essential supremum of some function of fields that are subject to constant rank differential constraints. This general framework includes the treatment of curl-free fields, divergence-free fields, symmetrized and higher order gradients, and fields that satisfy Maxwell's equations. He studies necessary and sufficient conditions under which these functionals possess a minimizer, relaxation, supremal representation, homogenization, approximation via Gamma-convergence, and he investigates selected systems of partial differential equations that arise as the Aronsson equations associated to such functionals. Previous work in this direction has been focused on the particular case where the admissible fields are gradients (curl-free); the corresponding issues for supremal functionals acting on fields subject to other differential constraints that appear naturally as balance laws have remained largely unaddressed. An important goal of the project is to bridge this gap by pursuing a systematic study of supremal functionals in this generality. The project aims to provide a unified view of the subject and, in particular, to reveal how the known properties of supremal functionals depending on gradients can be understood as a particular case in the broader context considered. The analytical methods developed by the investigator and his collaborators are used to study selected problems in materials sciences that are described by means of explicit variational principles involving supremal functionals. In particular, the project seeks to answer certain questions regarding the macroscopic behavior of polycrystals, and to elucidate several issues that come up in the study of granular materials, where new models are analyzed and used to study the flow of heterogeneous sand piles over given landscapes in the context of related Monge-Kantorovich mass transfer problems. The project is motivated by specific questions about the behavior of polycrystalline and granular materials. Such materials are very common: most metals found in nature are polycrystals; grains, coal, plastic, building materials (sand, gravel), and various powders and chemical compounds, are all examples of granular materials that are handled and stored on a daily basis. Thus, understanding how to mix and transport them in an optimal fashion is an issue of natural interest. Problems of practical importance where the more realistic approach is to minimize the supremum rather than the average of certain quantities are ubiquitous in many other areas, such as nonlinear elasticity, image processing, damage and fracture mechanics, plasticity, and semiconductor design. It is expected that the methods developed within this project will be relevant to an extensive range of applications, beyond those considered here explicitly. The broader impacts of the project are also achieved through training of graduate and undergraduate students, who are exposed to modern developments in applied analysis and are involved in projects related to the proposal, as well as through other educational and outreach activities.
研究者开发了新的方法,需要研究关键问题的新兴领域的变分法在L-无穷大的情况下,泛函被最小化的一些功能的字段是受常秩微分约束的基本上确界。 这个一般框架包括治疗的卷曲自由领域,发散自由领域,对称化和高阶梯度,并满足麦克斯韦方程组的领域。 他研究了这些泛函具有极小化、松弛、上确表示、均匀化、伽玛收敛逼近的充分必要条件,并研究了与此类泛函相关的Aronsson方程所产生的偏微分方程的选定系统。 以前在这个方向上的工作一直集中在特定的情况下,可容许的领域是梯度(无旋);相应的问题上的上泛函的领域受到其他微分约束,自然出现的平衡法仍然在很大程度上没有解决。 该项目的一个重要目标是弥合这一差距,追求系统的研究,在这种普遍性的超泛函。 该项目的目的是提供一个统一的观点的主题,特别是,揭示如何已知的性质取决于梯度的上泛函可以被理解为一个特定的情况下,在更广泛的背景下考虑。 由研究者和他的合作者开发的分析方法用于研究材料科学中的选定问题,这些问题通过涉及至上泛函的显式变分原理来描述。 特别是,该项目旨在回答有关多晶体宏观行为的某些问题,并阐明在颗粒材料研究中出现的几个问题,其中新模型被分析并用于研究在相关Monge-Kantorovich传质问题的背景下,给定景观上的异质沙堆的流动。 该项目的动机是关于多晶和颗粒材料行为的具体问题。 这些材料非常常见:自然界中发现的大多数金属都是多晶体;谷物,煤炭,塑料,建筑材料(沙子,砾石)以及各种粉末和化合物都是日常处理和储存的颗粒材料的例子。 因此,了解如何以最佳方式混合和运输它们是一个自然感兴趣的问题。 在许多其他领域,如非线性弹性、图像处理、损伤和断裂力学、塑性和半导体设计中,普遍存在具有实际重要性的问题,其中更现实的方法是最小化上确界而不是某些量的平均值。 预计在本项目中开发的方法将与广泛的应用有关,超出本文明确考虑的范围。 还通过培训研究生和本科生,使他们了解应用分析的现代发展,并参与与提案有关的项目,以及通过其他教育和外联活动,实现项目的更广泛影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marian Bocea其他文献
Problèmes elliptiques avec non-linéarité discontinue et second membre <em>L</em><sup>1</sup>
- DOI:
10.1016/s0764-4442(99)80338-3 - 发表时间:
1997-01-01 - 期刊:
- 影响因子:
- 作者:
Marian Bocea;Vicenţiu Rădulescu - 通讯作者:
Vicenţiu Rădulescu
A justification of the theory of martensitic thin films in the absence of an interfacial energy
- DOI:
10.1016/j.jmaa.2007.12.023 - 发表时间:
2008-06-01 - 期刊:
- 影响因子:
- 作者:
Marian Bocea - 通讯作者:
Marian Bocea
A Variational Characterization of the Effective Yield Set for Ionic Polycrystals
- DOI:
10.1007/s00245-013-9232-2 - 发表时间:
2014-01-11 - 期刊:
- 影响因子:1.700
- 作者:
Farhod Abdullayev;Marian Bocea;Mihai Mihăilescu - 通讯作者:
Mihai Mihăilescu
Marian Bocea的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marian Bocea', 18)}}的其他基金
Modern Methods in Calculus of Variations with Applications to Polycrystalline and Granular Materials
现代变分法在多晶和粒状材料中的应用
- 批准号:
1109138 - 财政年份:2011
- 资助金额:
$ 15.39万 - 项目类别:
Continuing Grant
Variational Methods for Some Problems in Materials Science
材料科学中一些问题的变分法
- 批准号:
0806789 - 财政年份:2008
- 资助金额:
$ 15.39万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Construction of new phase field methods for dynamical problems in the calculus of variations
变分法动力学问题新相场方法的构建
- 批准号:
20K14343 - 财政年份:2020
- 资助金额:
$ 15.39万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Breakthrough methods for noncommutative calculus
非交换微积分的突破性方法
- 批准号:
FL170100052 - 财政年份:2018
- 资助金额:
$ 15.39万 - 项目类别:
Australian Laureate Fellowships
Research on mathematical expressions and numerical methods for optimal hedging strategies via Malliavin calculus
基于Malliavin微积分的最优对冲策略的数学表达式和数值方法研究
- 批准号:
15K04936 - 财政年份:2015
- 资助金额:
$ 15.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Contemporary methods in calculus of variations and differential equations with applications to materials science
现代变分和微分方程方法及其在材料科学中的应用
- 批准号:
1412095 - 财政年份:2014
- 资助金额:
$ 15.39万 - 项目类别:
Standard Grant
Development of frequency methods for analysis and design of linear continuous periodic systems with delay by unifying the concepts of parametric transfer matrices and the calculus of Fredholm integral equations of the second kind
通过统一参数传递矩阵的概念和第二类 Fredholm 积分方程的计算,开发用于分析和设计时滞线性连续周期系统的频率方法
- 批准号:
215929929 - 财政年份:2012
- 资助金额:
$ 15.39万 - 项目类别:
Research Grants
Collaborative Research: Adaptive Methods and Finite Element Exterior Calculus for Nonlinear Geometric PDE
合作研究:非线性几何偏微分方程的自适应方法和有限元外微积分
- 批准号:
1216868 - 财政年份:2012
- 资助金额:
$ 15.39万 - 项目类别:
Standard Grant
Collaborative Research: Adaptive Methods and Finite Element Exterior Calculus for Nonlinear Geometric PDE
合作研究:非线性几何偏微分方程的自适应方法和有限元外微积分
- 批准号:
1217175 - 财政年份:2012
- 资助金额:
$ 15.39万 - 项目类别:
Standard Grant
Modern Methods in Calculus of Variations with Applications to Polycrystalline and Granular Materials
现代变分法在多晶和粒状材料中的应用
- 批准号:
1109138 - 财政年份:2011
- 资助金额:
$ 15.39万 - 项目类别:
Continuing Grant
Dynamics of a molecular switch by methods of functional analysis/calculus of variations
通过泛函分析/变分计算方法研究分子开关动力学
- 批准号:
400755-2010 - 财政年份:2010
- 资助金额:
$ 15.39万 - 项目类别:
University Undergraduate Student Research Awards
Modern methods in the Calculus of Variations with applications to materials science and hydrodynamics
变分法的现代方法及其在材料科学和流体动力学中的应用
- 批准号:
0708039 - 财政年份:2007
- 资助金额:
$ 15.39万 - 项目类别:
Standard Grant