Structural Studies of a Plant Nitrate Transporter and Receptor
植物硝酸盐转运体和受体的结构研究
基本信息
- 批准号:1157561
- 负责人:
- 金额:$ 53.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-01 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
INTELLECUTAL MERITNitrogen is an essential building block of amino acids and nucleic acids and is crucial for every single form of life on earth. Plants play a key role in converting nitrogen from its inorganic form to an organic form and assimilate more than 90% of the nitrogen through nitrate absorption. In order to efficiently take up nitrate in soils, plants are capable of transporting nitrate across cellular membranes, as well as sensing environmental nitrate concentration changes. A clue to how plants sense soil nitrate changes was revealed by the finding of an unexpected nitrate receptor function in the Arabidopsis nitrate transporter, CHL1. As a member of the Major Facilitator Superfamily, CHL1 is a dual-affinity transporter, displaying a biphasic kinetic property in response to low and high concentrations of nitrate. Phosphorylation of a specific threonine residue switches the transporter between the two affinity modes. Remarkably, independent of its transporter function, CHL1 can also sense and respond to variable nitrate concentrations and control gene expression in a biphasic manner. The same phosphorylation site of CHL1 also regulates its sensor activity. How does CHL1 sense nitrate concentration? What is the molecular mechanism underlying the functions of CHL1 as both a nitrate transporter and sensor? How does phosphorylation regulate CHL1 activities? This project will start to address these questions by revealing the atomic structures of CHL1 in different functional states. Membrane protein X-ray crystallography will be used as the primary approach to achieve the following specific aims: (1) structure determination of CHL1 in the presence of high nitrate concentration; and (2) structure determination of CHL1 in the presence of low nitrate concentration. The results will help unravel the overall molecular architecture of CHL1, the potential nitrate-binding sites that are important for its transporter and receptor functions, and the structural determinants and mechanisms underlying its dual-affinity nitrate transporter and sensor activities.BROADER IMPACTSThis research project will impact science and education in two major areas: (1) Advancing basic research in plant biology in the US with agricultural and environmental implications and (2) Nucleating a regional membrane protein structural biology community. Food, energy, and environment are the three major challenges the world is facing in the 21st century. Solutions to these challenges require a thorough understanding of plant biology at the very fundamental level. This project will promote plant biology research by applying cutting-edge structural biology approaches to plant sciences. It represents an initiative in advancing plant structural biology, with an emphasis on addressing emerging key questions in plant biology and propagating plant sciences in the larger community. The project will also foster further development of regional community of membrane protein structural biologists by offering training in recombinant membrane protein production, crystallization, and structure determination. Our efforts range from hands-on training of undergraduate and graduate students, technicians, and PIs outside the lab, to regular presentations at graduate program meetings, departmental retreats, special interests clubs, and joint university courses.This project is jointly supported by the Cellular Processes Cluster in the Division of Molecular and Cellular Biosciences and the Chemistry of Life Processes program in the Chemistry Division.
氮是氨基酸和核酸的基本组成部分,对地球上的每一种生命形式都至关重要。 植物在将氮从无机形式转化为有机形式方面起着关键作用,并且通过硝酸盐吸收吸收90%以上的氮。 为了有效地吸收土壤中的硝酸盐,植物能够通过细胞膜运输硝酸盐,以及感知环境硝酸盐浓度的变化。 拟南芥硝酸盐转运蛋白CHL 1中一个意想不到的硝酸盐受体功能的发现揭示了植物如何感知土壤硝酸盐变化的线索。 作为主要易化因子超家族的一员,CHL 1是一种双亲和转运蛋白,对低浓度和高浓度的硝酸盐具有双相动力学特性。特定苏氨酸残基的磷酸化在两种亲和模式之间切换转运蛋白。 值得注意的是,独立于其转运功能,CHL 1也可以感知和响应可变的硝酸盐浓度,并以双相方式控制基因表达。CHL 1的相同磷酸化位点也调节其传感器活性。 CHL 1如何感知硝酸盐浓度?CHL 1作为硝酸盐转运体和传感器的分子机制是什么?磷酸化如何调节CHL 1活性?该项目将通过揭示CHL 1在不同功能状态下的原子结构来解决这些问题。 膜蛋白X射线晶体学将被用作实现以下特定目标的主要方法:(1)在高硝酸盐浓度存在下CHL 1的结构测定;以及(2)在低硝酸盐浓度存在下CHL 1的结构测定。研究结果将有助于揭示CHL 1的整体分子结构、对其转运蛋白和受体功能至关重要的潜在硝酸盐结合位点,以及其双重亲和硝酸盐转运蛋白和传感器活性的结构决定因素和机制。更广泛的影响本研究项目将在两个主要领域影响科学和教育:(1)推进美国植物生物学的基础研究与农业和环境的影响和(2)核区域膜蛋白结构生物学社区。粮食、能源和环境是21世纪世界面临的三大挑战。解决这些挑战需要在最基础的层面上彻底了解植物生物学。该项目将通过将尖端结构生物学方法应用于植物科学来促进植物生物学研究。它代表了推进植物结构生物学的一项举措,重点是解决植物生物学中新出现的关键问题,并在更大的社区中传播植物科学。该项目还将通过提供重组膜蛋白生产、结晶和结构测定方面的培训,促进膜蛋白结构生物学家区域社区的进一步发展。我们的工作范围从实验室外的本科生和研究生、技术人员和PI的实践培训,到研究生项目会议、部门务虚会、特殊兴趣俱乐部和大学联合课程的定期演示。该项目由分子和细胞生物科学部的细胞过程集群和化学部的生命过程化学项目共同支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ning Zheng其他文献
Identifying WeChat Message Types without Using Traditional Traffic
不使用传统流量识别微信消息类型
- DOI:
10.3390/info11010018 - 发表时间:
2019-12 - 期刊:
- 影响因子:3.1
- 作者:
Qiang Zhang;Ming Xu;Ning Zheng;Tong Qiao;Yaru Wang - 通讯作者:
Yaru Wang
Elevated CA125 in primary peritoneal serous psammocarcinoma: a case report and review of the literature
原发性腹膜浆液性砂粒细胞癌中 CA125 升高:病例报告及文献复习
- DOI:
10.1136/bcr.10.2008.1063 - 发表时间:
2009 - 期刊:
- 影响因子:0.9
- 作者:
Deng Zhen;Ning Zheng;Heng Liu;D. Liao;X. Ye;Q. Zhou;Jie;Huaihua Li;Qi Liu;Kang - 通讯作者:
Kang
Risk Factors Affecting Condom Use among Royal Thai Army Conscripts in Thailand
影响泰国皇家陆军义务兵使用安全套的风险因素
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Phrutthinun Surit;Wutthichai Jariya;Ning Zheng;He Yi;X. Yu;W. Srithong;S. Mirasena - 通讯作者:
S. Mirasena
An Automatic Carving Method for RAR File Based on Content and Structure
基于内容和结构的RAR文件自动雕刻方法
- DOI:
10.1109/itcs.2010.23 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Yingjie Wei;Ning Zheng;Ming Xu - 通讯作者:
Ming Xu
Inter-orifice distance dependence of flow rate in a quasi-two-dimensional hopper with dual outlets
双出口准二维料斗内孔间距对流量的依赖性
- DOI:
10.1016/j.powtec.2018.01.019 - 发表时间:
2018-04 - 期刊:
- 影响因子:5.2
- 作者:
Cheng Xu;Fei-Liang Wang;Li-Peng Wang;Xiao-Shuang Qi;Qing-Fan Shi;Liang-Sheng Li;Ning Zheng - 通讯作者:
Ning Zheng
Ning Zheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Molecular structural studies of plant biosynthetic enzymes
植物生物合成酶的分子结构研究
- 批准号:
525982-2018 - 财政年份:2018
- 资助金额:
$ 53.88万 - 项目类别:
University Undergraduate Student Research Awards
Molecular structural studies of protein complexes essential for viral replication and plant nitrogen metabolism
病毒复制和植物氮代谢必需的蛋白质复合物的分子结构研究
- 批准号:
262089-2008 - 财政年份:2014
- 资助金额:
$ 53.88万 - 项目类别:
Discovery Grants Program - Individual
Studies on adaptation ability to environmental stresses during structural transition of plant proteasome
植物蛋白酶体结构转变过程中对环境胁迫适应能力的研究
- 批准号:
23380198 - 财政年份:2011
- 资助金额:
$ 53.88万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Molecular structural studies of protein complexes essential for viral replication and plant nitrogen metabolism
病毒复制和植物氮代谢必需的蛋白质复合物的分子结构研究
- 批准号:
262089-2008 - 财政年份:2011
- 资助金额:
$ 53.88万 - 项目类别:
Discovery Grants Program - Individual
Molecular structural studies of protein complexes essential for viral replication and plant nitrogen metabolism
病毒复制和植物氮代谢必需的蛋白质复合物的分子结构研究
- 批准号:
262089-2008 - 财政年份:2010
- 资助金额:
$ 53.88万 - 项目类别:
Discovery Grants Program - Individual
Molecular structural studies of protein complexes essential for viral replication and plant nitrogen metabolism
病毒复制和植物氮代谢必需的蛋白质复合物的分子结构研究
- 批准号:
262089-2008 - 财政年份:2009
- 资助金额:
$ 53.88万 - 项目类别:
Discovery Grants Program - Individual
Molecular- and structural-biological studies on plant necrosis
植物坏死的分子和结构生物学研究
- 批准号:
20590123 - 财政年份:2008
- 资助金额:
$ 53.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular structural studies of protein complexes essential for viral replication and plant nitrogen metabolism
病毒复制和植物氮代谢必需的蛋白质复合物的分子结构研究
- 批准号:
262089-2008 - 财政年份:2008
- 资助金额:
$ 53.88万 - 项目类别:
Discovery Grants Program - Individual
Structural and Functional Studies of Plant Natural Product Uridine Diphosphate Glycosyltransferases
植物天然产物尿苷二磷酸糖基转移酶的结构和功能研究
- 批准号:
0416883 - 财政年份:2004
- 资助金额:
$ 53.88万 - 项目类别:
Continuing Grant
Structural studies of plant disease resistance proteins
植物抗病蛋白的结构研究
- 批准号:
ARC : DP0208353 - 财政年份:2002
- 资助金额:
$ 53.88万 - 项目类别:
Discovery Projects














{{item.name}}会员




