Novel Optimization Methods for Design, Synthesis, Supply Chain, and Uncertainty of Hybrid Biomass, Coal, and Natural Gas to Liquids, CBGTL, Processes
用于混合生物质、煤炭和天然气液化、CBGTL、工艺的设计、合成、供应链和不确定性的新颖优化方法
基本信息
- 批准号:1158849
- 负责人:
- 金额:$ 37.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Intellectual Merit of Proposed Activity: A grand challenge in sustainable supply of energy is the introduction of hybrid energy processes with feedstocks that include renewable raw materials and improve the life cycle analysis. The primary objective of the research proposed here is to develop novel theoretical, algorithmic and computational techniques for the discovery and analysis of transformative hybrid energy processes based on biomass, coal, and natural gas that produce gasoline, diesel, and kerosene at levels that can address the United States transportation fuel demands. We propose to investigate: (i) an optimization-based process synthesis framework for novel hybridenergy CBGTL processes based on superstructure representation of the most promising alternatives that will address (a) thermochemical conversion, (b) biochemical conversion, (c) heat, power, and water integration, and (d) global optimization of the resulting nonconvex MINLP models; (ii) a systematic framework for the determination of the optimal energy supply chain network in the United States for the hybrid energy CBGTL plants that will address (a) the optimal geographic location and size of the CBGTL plants, (b) the optimal layout and connectivity of the different available feedstock resources (i.e., natural gas, different types of coal and biomass), and (c) the optimal transportation infrastructure to deliver feeds and products to and from the CBGTL plants; (iii) new approaches for quantifying the role of uncertainty in (a) feedstock availability and prices, (b) yields, (c) transportation topology andcost, (d) demand profiles, and (e) product prices, that will be based on (i) a robust optimization, (ii) a conditional value at risk,CVAR, framework, (iii) a two-stage stochastic programming, and (iv) a combination of CVAR and robust optimization; and (iv) novel approaches for the long range and strategic planning of CBGTL processes for both the deterministic and under uncertainty cases. We expect that new and transformative theoretical, algorithmic, and computational results, and novel methodologies will be developed and applied to the (i) design and synthesis of individual novel hybrid energy CBGTL processes; (ii) integration of heat, power, and water within the process synthesis of CBGTL processes; (iii) optimal determination of the energy supply chain network; and (iv) elucidation of the role and impact of uncertainty on feedstock levels and prices, yields, transportation costs and topology, and product prices for the CBGTL individual plants and their energy supply network.Broader Impacts Resulting from the Proposed Activity: The proposed approach has the potential to significantly advance and transform the traditional chemical processing and production so as to attain a sustainable future. The development of novel hybrid biomass, coal, and natural gas, CBGTL, energy processes, and their deployment in the energy supply network, has the potential to contribute significantly to the economic growth of the US.Integration of Research and Education: The proposed effort will integrate participation of undergraduate andgraduate students and will include underrepresented minorities and visiting students. At the undergraduate level, thePI has used and will use as a senior design project, hybrid energy processes, while at the graduate level, the PI intendsto incorporate the findings in a graduate course on Optimization in Process Systems Engineering. The students willreceive training in process design, simulation, synthesis, optimization, energy, power and water integration, life cycleanalysis, and scientific computation.Broaden Representation of Underrepresented Groups: The proposed research will broaden the participation of under-represented groups since it will aim at attracting female and minority students at the graduate level and the undergraduate junior independent and senior theses students level. The PI has a proven record of promoting diversity in chemical engineering. His trainees have had diverse socioeconomic, racial and ethnical backgrounds, and have included (18) female students and postdoctoral fellows many of whom are now distinguished researchers and Professors in the US or abroad. Currently, the PI supervises 3 female graduate students and 1 female high school student. The PI will continue recruiting efforts of under-represented groups for this project via meeting during his seminar visits and conferences, and attracting juniors and seniors for independent research work.Dissemination: The results of the proposed work will be broadly disseminated to researchers in academia and industry through presentations at domestic and international meetings, scholarly refereed journal publications and through an already available dedicated web site (http://helios.princeton.edu/hybrid-energy) which will describe the approaches, implementations and results. We will also make freely available all case studies and our implementations of the proposed work and create a web tool for easy access. We also intend to prepare a CACHE Design case study to be widely distributed worldwide. Undergraduate and graduate students will be involved in its preparation.Impact on Society: The proposed research has potential to accelerate the discovery of transformative hybridenergy processes that will lead into sustainable biofuels that meet the transportation targets of the United States.
拟议活动的智力价值:可持续能源供应的一个重大挑战是采用混合能源工艺,其原料包括可再生原材料,并改进生命周期分析。这里提出的研究的主要目标是开发新的理论、算法和计算技术,以发现和分析基于生物质、煤炭和天然气的变革性混合能源过程,这些过程以能够满足美国运输燃料需求的水平生产汽油、柴油和煤油。我们建议研究:(I)基于最有希望的备选方案的超结构表示的新型混合能源CBGTL过程的基于优化的过程综合框架,该框架将解决(A)热化学转化、(B)生化转化、(C)热、电和水集成以及(D)所产生的非凸MINLP模型的全局优化;(2)确定混合能源CBGTL工厂在美国的最佳能源供应链网络的系统框架,该框架将涉及(A)CBGTL工厂的最佳地理位置和规模,(B)不同可用原料资源(即天然气、不同类型的煤和生物质)的最佳布局和连接,以及(C)向CBGTL工厂和从CBGTL工厂运送饲料和产品的最佳交通基础设施;(3)量化不确定性在(A)原料供应和价格、(B)产量、(C)运输拓扑和成本、(D)需求概况和(E)产品价格中的作用的新方法,这将基于(1)稳健优化、(2)条件风险值、CVaR框架、(3)两阶段随机规划和(4)CVaR和稳健优化的组合;以及(4)在确定性和不确定性情况下CBGTL过程的长期和战略规划的新方法。我们期待着新的和变革性的理论、算法和计算结果以及新的方法将被开发和应用于(I)设计和合成单个新的混合能源CBGTL工艺;(Ii)在CBGTL工艺的工艺合成中整合热、电和水;(Iii)能源供应链网络的优化确定;以及(4)阐明不确定性对CBGTL各工厂及其能源供应网络的原料水平和价格、产量、运输成本和拓扑结构以及产品价格的作用和影响。拟议活动产生的广泛影响:拟议的方法有可能显著推进和改变传统的化学加工和生产,以实现可持续的未来。新型混合生物质、煤炭和天然气、CBGTL、能源流程的开发及其在能源供应网络中的部署,有可能为美国的经济增长做出重大贡献。研究和教育整合:拟议的努力将整合本科生和研究生的参与,并将包括代表不足的少数族裔和来访学生。在本科阶段,PI已经并将作为高级设计项目--混合能源工艺使用,而在研究生阶段,PI打算将研究结果纳入过程系统工程优化的研究生课程。学生将接受过程设计、模拟、综合、优化、能量、电力和水整合、生命周期分析和科学计算方面的培训。代表不足的群体:拟议的研究将扩大代表不足的群体的参与,因为它将旨在吸引研究生水平的女性和少数族裔学生以及本科初级独立和高级论文学生水平。PI在促进化学工程领域的多样性方面有着被证明的记录。他的学员具有不同的社会经济、种族和民族背景,其中包括18名女学生和博士后研究员,其中许多人现在是美国或国外的杰出研究人员和教授。目前,PI管理3名女研究生和1名女高中生。PI将继续为该项目招募代表不足的群体的努力,通过在他的研讨会访问和会议期间举行会议,并吸引初级和高级人员进行独立研究工作。分裂:拟议工作的结果将通过在国内和国际会议上的演讲、学术评论期刊出版物和已经可用的专门网站(http://helios.princeton.edu/hybrid-energy))向学术界和工业界的研究人员广泛传播,该网站将描述方法、实施和结果。我们还将免费提供所有案例研究和我们对拟议工作的实施,并创建一个便于访问的网络工具。我们还打算准备一个缓存设计案例研究,在全球范围内广泛分发。本科生和研究生将参与其准备工作。对社会的影响:拟议中的研究有可能加速发现变革性的混合能源过程,这些过程将导致可持续的生物燃料,满足美国的交通目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christodoulos Floudas其他文献
Christodoulos Floudas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christodoulos Floudas', 18)}}的其他基金
EAGER: Towards Multiscale Modeling, Optimization, and Uncertainty in Materials Design for CO2 Capture
EAGER:二氧化碳捕获材料设计中的多尺度建模、优化和不确定性
- 批准号:
1263165 - 财政年份:2013
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Integrated Framework for Operational Planning and Scheduling Under Uncertainty
不确定性下的运营规划和调度综合框架
- 批准号:
0856021 - 财政年份:2009
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
CDI-Type II: MS-Omics Hub for Cyber-enabled Acceleration of Mass Spectrometry-based Metabolomics and Proteomics
CDI-Type II:MS-Omics 中心,用于网络加速基于质谱的代谢组学和蛋白质组学
- 批准号:
0941143 - 财政年份:2009
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Novel Methods and Computational Studies for Global Optimization
全局优化的新方法和计算研究
- 批准号:
0827907 - 财政年份:2008
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
GOALI: Short-term Scheduling Under Uncertainty: A Robust Optimization Framework
GOALI:不确定性下的短期调度:鲁棒优化框架
- 批准号:
0355336 - 财政年份:2004
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
SGER:Performance Analysis of the BlueGene Class of Machines via the ASTRO-FOLD Protein Structure Prediction Framework
SGER:通过 ASTRO-FOLD 蛋白质结构预测框架对 BlueGene 类机器进行性能分析
- 批准号:
0401635 - 财政年份:2004
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
FOCAPD 2004 Conference: Discovery through Product and Process Design
FOCAPD 2004 会议:通过产品和工艺设计进行发现
- 批准号:
0355399 - 财政年份:2004
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
ITR: Collaborative Research: (ASE+NHS+EVS)-(sim+dmc+int): In Silico De Novo Protein Design: A Dynamically Data Driven, (DDDAS), Computational and Experimental Framework
ITR:协作研究:(ASE NHS EVS)-(sim dmc int):计算机从头蛋白质设计:动态数据驱动、(DDDAS)、计算和实验框架
- 批准号:
0426691 - 财政年份:2004
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
Improved Convex Underestimators and Hybrid Methods for Deterministic Global Optimization
用于确定性全局优化的改进凸低估器和混合方法
- 批准号:
0330541 - 财政年份:2003
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
QSB: Computational and Experimental Studies of Pathways in Yeast
QSB:酵母途径的计算和实验研究
- 批准号:
0222471 - 财政年份:2002
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Novel Parallelization Frameworks for Large-Scale Network Optimization with Combinatorial Requirements: Solution Methods and Applications
职业:具有组合要求的大规模网络优化的新型并行化框架:解决方法和应用
- 批准号:
2338641 - 财政年份:2024
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Novel optimization methods for cancer screening and treatment
癌症筛查和治疗的新优化方法
- 批准号:
RGPIN-2019-05588 - 财政年份:2022
- 资助金额:
$ 37.5万 - 项目类别:
Discovery Grants Program - Individual
Novel domain-specific languages and compiler optimization methods for computational biology
计算生物学的新颖的特定领域语言和编译器优化方法
- 批准号:
RGPIN-2019-04973 - 财政年份:2022
- 资助金额:
$ 37.5万 - 项目类别:
Discovery Grants Program - Individual
Novel Optimization Methods and Treatment Planning System for Clinically-Deliverable Truly-Hybrid Proton-Photon Radiotherapy
用于临床可交付的真正混合质子-光子放射治疗的新型优化方法和治疗计划系统
- 批准号:
10682384 - 财政年份:2021
- 资助金额:
$ 37.5万 - 项目类别:
Novel optimization methods for cancer screening and treatment
癌症筛查和治疗的新优化方法
- 批准号:
RGPIN-2019-05588 - 财政年份:2021
- 资助金额:
$ 37.5万 - 项目类别:
Discovery Grants Program - Individual
Novel domain-specific languages and compiler optimization methods for computational biology
计算生物学的新颖的特定领域语言和编译器优化方法
- 批准号:
RGPIN-2019-04973 - 财政年份:2021
- 资助金额:
$ 37.5万 - 项目类别:
Discovery Grants Program - Individual
Novel Discontinuous Galerkin Methods for Deterministic and Stochastic Optimization Problems with Inequality Constraints
具有不等式约束的确定性和随机优化问题的新型间断伽辽金方法
- 批准号:
2111004 - 财政年份:2021
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
CAREER: Computational design of sustainable hydrogenation systems via a novel combination of data science, optimization, and ab initio methods
职业:通过数据科学、优化和从头算方法的新颖组合进行可持续加氢系统的计算设计
- 批准号:
2045550 - 财政年份:2021
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
Novel Optimization Methods and Treatment Planning System for Clinically-Deliverable Truly-Hybrid Proton-Photon Radiotherapy
用于临床可交付的真正混合质子-光子放射治疗的新型优化方法和治疗计划系统
- 批准号:
10442285 - 财政年份:2021
- 资助金额:
$ 37.5万 - 项目类别:
A novel development of optimization and deep learning methods based on the idea of structure-preserving numerical analysis
基于结构保持数值分析思想的优化和深度学习方法的新发展
- 批准号:
21H03452 - 财政年份:2021
- 资助金额:
$ 37.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




